X-63-10030 Copy bode 2 53 NASA TM X-658 488 TM X-658 # TECHNICAL MEMORANDUM x-658 EFFECTS OF OFF-DESIGN INLET MASS FLOW UPON STATIC STABILITY OF A DELTA WINGED CONFIGURATION WITH A CANARD CONTROL AND PYLON-MOUNTED NACELLES FOR MACH NUMBERS FROM 0.65 TO 3.50 By A. Vernon Gnos and Richard L. Kurkowski Ames Research Center Moffett Field, Calif. | UNCLASSIFED | | Declassified by au Classification Change Dated ** | | | |--|------------|---|---------------------------------------|------------| | by Authority of Annaharana Rely | 1 | | 15. 15. | | | CLASSIFIE | FORM 602 | (Accession Number) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (THRU) | | This material contains information of the explonage taws, This 18, U.S. (manner to an unauthorized person is | FACILITY F | (NASA CR OR TMX OR AD NUMBER) | - | (CATEGORY) | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON November 1962 TECHNICAL MEMORANDUM X-658 EFFECTS OF OFF-DESIGN INLET MASS FLOW UPON STATIC STABILITY OF A DELTA WINGED CONFIGURATION WITH A CANARD CONTROL AND PYLON-MOUNTED NACELLES FOR MACH NUMBERS FROM 0.65 TO 3.50* By A. Vernon Gnos and Richard L. Kurkowski #### SUMMARY X63-10030 The model tested had four podded engines mounted beneath the aspect ratio 2.17 wing. Several arrangements of nacelle locations were tested. To determine effects of off-design inlet mass flow upon static stability the nacelles were either partially blocked or plugged. The Mach numbers of the investigation were from 0.65 to 3.5 with Reynolds numbers of about 4×6^6 based on mean aerodynamic chord. Results were obtained at angles of attack and sideslip from -6^0 to $+8^0$. The results indicate large increments in yawing moment for a blocked outboard nacelle and large increments in rolling moment for a blocked inboard nacelle at Mach numbers above 2.0. At Mach number 1.0 significant changes in longitudinal static margin occurred. Interference effects were found to be a function of nacelle placement, angles of attack and sideslip, Mach number, and inlet mass-flow ratio. Author #### INTRODUCTION One problem in the use of podded engines mounted on the wing of supersonic aircraft is the effect of engine flame-out upon stability. In addition to yawing moments due to asymmetric thrust, the inlet and exit flow fields generated by the sudden reduction of mass flow through the flamed-out engine may be destabilizing and result in serious aerodynamic control and trim problems. The results of references 1 and 2 indicate that at about M=2.0, interference effects resulting from reduced mass flow could produce adverse yawing and rolling moments. Further, it was found for the conditions of engine flame-out that the placement of nacelles beneath a wing could influence the control and trim problems. The present investigation was conducted, therefore, to determine the effects of reduced inlet mass flow upon static stability of a supersonic aircraft configuration with various nacelle locations. The configuration chosen for study employed pylon-mounted podded engines since this type of engine installation appears to present the most severe aerodynamic control problem for an engine-out condition. The nacelles were located to minimize fuselage-wing juncture and wing shock-wave interference with the inlets for Mach numbers above 1.5. Adjacent nacelle inlet flame-out interferences were also considered. #### SYMBOLS The system of stability axes and the positive direction of forces, moments, and angles are shown in figure 1. | ъ | wing span | |--|---| | ē | mean aerodynamic chord | | c_D | drag coefficient, $\frac{\text{drag}}{q_{\infty}S}$ | | $^{\mathrm{C}}\mathrm{D}_{\mathrm{b}_{\mathrm{F}}}$ | fuselage base drag coefficient, $\frac{\text{base drag}}{q_{\infty}S}$ | | $^{\mathtt{C}_{\mathrm{D}_{\mathrm{b}_{\mathrm{I}}}}}$ | inboard nacelle base drag coefficient, $\frac{\text{base drag}}{q_{\infty}S}$ | | $^{\mathrm{C}}\mathrm{D}_{\mathrm{D}_{\mathrm{O}}}$ | outboard nacelle base drag coefficient, $\frac{\text{base drag}}{q_{\infty}S}$ | | CD^{O} | drag coefficient at zero lift | | $\triangle c_{\mathbb{D}_{0}}$ | incremental drag coefficient at zero lift, $ ^{\rm C}{\rm D}_{\rm O} ^{\rm C}{\rm reduced\ mass\ flow} ^{\rm O}{\rm open\ nacelles} $ | | C_{L} | lift coefficient, $\frac{\text{lift}}{q_{\infty}S}$ | | Cl | rolling-moment coefficient, $\frac{\text{rolling moment}}{q_{\infty}Sb}$ | | ΔC_{l} | incremental rolling-moment coefficient determined at β = 00, C1 reduced mass flow open nacelles | |--|---| | <u> δβ</u> | effective dihedral derivative | | $\mathtt{C}_{\mathtt{m}}$ | pitching-moment coefficient, $\frac{\text{pitching moment}}{q_{\infty}S\bar{c}}$ | | $C_{m_{_{\bigcirc}}}$ | pitching-moment coefficient at zero lift | | $\Delta C_{m_{_{\scriptsize O}}}$ | incremental pitching-moment coefficient at zero lift, $^{\rm C}_{\rm m}$ $^{\rm - C}_{\rm m}$ open nacelles | | $\frac{9c^{\Gamma}}{9c^{m}}$ | longitudinal static margin determined at zero lift | | $\nabla \frac{9 \text{CT}}{9 \text{Cm}}$ | incremental longitudinal static margin at zero lift, δC_{m} | | | $\frac{\partial C_{L}}{\partial C_{L}}$ reduced mass flow open nacelles | | C_n | yawing-moment coefficient, $\frac{\text{yawing moment}}{q_{\infty}Sb}$ | | $\Delta C_{\mathbf{n}}$ | incremental yawing-moment coefficient determined at β = 0°, $^{C}n_{\text{reduced mass flow}}$ - $^{C}n_{\text{open nacelles}}$ | | $\frac{\partial \beta}{\partial C^{\mathbf{u}}}$ | directional stability derivative | | $\mathbf{c}_{\mathtt{Y}}$ | side-force coefficient, $\frac{\text{side force}}{q_{\infty}S}$ | | М | Mach number | | $\frac{m_{\text{I}}}{m_{\infty}}$ | inboard inlet mass-flow ratio, inboard inlet mass flow free-stream mass flow based on inboard inlet area | | $\frac{m_{O}}{m_{\infty}}$ | outboard inlet mass-flow ratio, outboard inlet mass flow free-stream mass flow based on outboard inlet area | |----------------------------|---| | p | rolling velocity | | <u>pb</u> | wing tip helix angle | | $ ext{d}^{\infty}$ | free-stream dynamic pressure | | R | Reynolds number | | S | total wing area | | V | free-stream velocity | | a, | angle of attack | | β | angle of sideslip | ## Configuration Notation | Notation | Model No. | |-------------------|-----------| | $F_1W_1C_1V_1N_1$ | 1 | | $F_1W_1C_1V_1N_2$ | 2 | | $F_1W_1C_1V_1N_3$ | 3 | | $F_2W_2C_1V_2N_1$ | 4 | | $F_1W_2C_1V_1N_1$ | 5 | ## Component | F_{1} | fuselage with afterbody | |-------------------------|----------------------------------| | $F_{\mathbf{Z}}$ | fuselage without afterbody | | W_{1} | wing | | W_{2} | wing with 60° drooped tips | | $\mathtt{C}_\mathtt{l}$ | canard | | V_{1} | single vertical tail | | V2 | twin vertical tails | | N_{\perp} | all nacelles aft | | N_2 | inboard nacelles forward | | \mathbb{N}_{3} | inboard nacelles forward and low | | | | #### APPARATUS AND TEST PROCEDURE #### Test Facility The experimental data reported herein were obtained in the 11- by 11-foot, 9- by 7-foot, and 8- by 7-foot test sections of the Ames Unitary Plan Wind Tunnel. This wind tunnel is of the closed-circuit variable-pressure type. The 11- by 11-foot, 9- by 7-foot, and 8- by 7-foot test sections utilize, respectively, slotted walls and a symmetric flexible nozzle, an asymmetric adjustable nozzle, and a symmetric flexible walled nozzle to provide for continuous variation of the test Mach number from 0.65 to 1.4, 1.5 to 2.5, and 2.5 to 3.5. Models tested in this facility are sting mounted on a support system capable of movement to combined angles of attack and sideslip. Model forces and moments are measured by a six-component strain-gage balance located within the model. #### Models Illustrations of the test models are shown in the photographs of figure 2 and sketches of figure 3. Model geometric characteristics are presented in table I and a key to the nacelle locations and mass flows is shown in table II. Model configurations employ the fuselage, wing, canard, and vertical tail of reference 3. The wing has a hexagonal airfoil section with constant 3-percent thickness from 30 to 70 percent. Two vertical-tail configurations, a single tail and a twin tail arrangment, were tested. Both tail configurations had the same plan form. The canard and vertical tails were set at 0° deflection throughout the test. The test configurations are separated into five groups designated models 1, 2, 3, 1 , and 5 to facilitate presentation of data and discussion of results. All five models have the same wing, canard, and tail plan forms, and forebody. Model 1 incorporates four nacelles located in the aft position and a single vertical tail on an extended afterbody as shown in figure 3(a). Model 2 is model 1 with the inboard nacelles moved forward 0.81 nacelle lengths as shown in figure 3(b). Model 3 is model 2 with the inboard nacelles lowered one inlet diameter. Model 1 4 incorporates all nacelles aft, twin vertical tails mounted on the wing, no afterbody, and wing tips deflected downward 60 0. Model 5 is model 1 with wing tips deflected 60 0. #### TEST CONDITIONS Data were obtained at Mach numbers of 0.65, 0.85, 0.95, 1.0, 1.1, 1.25, 1.4, 1.6, 2.5, 3.0, and 3.5. Both the angles of attack and sideslip were varied from -6° to $+8^{\circ}$. Longitudinal data were obtained with the model at 0° of
sideslip, and lateral and directional data were obtained with 3° and 5° angle of attack. The test Reynolds numbers based on the reference mean aerodynamic chord were 4.2 million and 3.5 million. Three inlet mass flow ratios 1.0, ≈ 0.3 , and 0 were used. Mass-flow ratio was assumed to be 1.0 for the open nacelles. For the partial mass-flow condition a nacelle exit diameter of 0.65 inch was used throughout the test. As a result, mass-flow ratio which was calculated from a measured exit static pressure with the assumption of sonic velocity at the exit, varied from about 0.2 at M = 0.65 to 0.3 at M = 3.5 with $\alpha = 0^{\circ}$. Mass-flow ratio varied slightly with α and β . The maximum variation was about ± 0.15 for the inboard aft inlet position where wing precompression was felt. All the test configurations incorporated fixed boundary-layer transition at about 10-percent chord of the wing, canard, and vertical tails. Transition was also fixed 2 inches back of the fuselage apex and 1 inch back of the inlet lip. The sublimation technique of reference 4 was used to verify the occurrence of transition at the desired location. #### Reduction of Data The data presented herein have been reduced to coefficient form based on the model wing geometry as listed in table I. The pitching-and yawing-moment coefficients have been referred to the projection, on the body center line, of the 0.25 point of the wing mean aerodynamic chord. All coefficients were referred to the stability axes as indicated in figure 1. The base pressures were measured and the drag data were adjusted to correspond to conditions wherein the base pressures are equal to free-stream static pressure. Internal drag has been subtracted and buoyancy corrections were applied to the drag data. Boundary-layer trip drag has not been subtracted from the model drag data. Yawing- and pitching-moment data were not adjusted for nacelle base drag or internal drag because these effects were negligible. Model attitude has been corrected for balance and sting deflection and local stream angles. #### RESULTS AND DISCUSSION A complete set of test data is presented in tabular form in tables III through VII. Typical data and summary curves are presented in figures 4 through 22. The magnitude of the interference effects resulting from diversion of the flow around the nacelles are illustrated by a comparison of the over-all incremental forces and moments with the calculated contribution of the axial force on the blocked nacelles. The calculated values, obtained by use of the experimental drag of a flat-faced cylinder of reference 5, are plotted for comparison with the experimental data. The rolling moments calculated for turning of the flow by the open nacelles (ref. 6) are also presented. #### Model 1 Directional characteristics.- The effects of off-design inlet mass flow upon the directional characteristics of model 1 are illustrated by the data of figure 4 and summarized in figure 5. The major effects were the incremental yawing moments which resulted as mass flow was reduced. Small effects of reduced flow of either inboard or outboard nacelle on yawing moments were present for Mach numbers below 2.0. Incremental yawing moments resulting from zero flow of either nacelle were less than that produced by 10 of sideslip of the model with unrestricted flow through the nacelles. At Mach numbers above 2.0, however, large effects were evident. The outboard nacelle was responsible for the greatest yawing moments as expected. Zero mass flow of this nacelle at Mach number 3.0 and 50 angle of attack produced a yawing moment equal to that developed by the model with unrestricted flow at about 50 of sideslip. The data of figures 4 and 5 were obtained at 30 angle of attack; however, the data of table III indicate that the incremental yawing moments are independent of angle of attack in the range of 00 to 50. The incremental yawing moments present with reduced mass flow are compared in figure 5 with the incremental yawing moments calculated from consideration of the drag forces on the nacelle alone. For Mach numbers less than about 2.5, the interference effects were compensating in that the measured moments were considerably less than those calculated. For Mach numbers of 2.5 to 3.5 the measured incremental yawing moments were greater than calculated for the outboard nacelle and were in fair agreement with calculated values for the inboard nacelle. Directional stability, $\partial C_n/\partial \beta$, was unaffected by reduced flow through the inboard nacelle at all Mach numbers, and through the outboard nacelle at Mach numbers below 2.0. However, between Mach numbers 2.0 and 3.0, reduced flow through the outboard nacelle caused a reduction in directional stability for a portion of the range of sideslip angles. These effects are illustrated in figure 4(b). The disturbance field generated by the outboard nacelle inlet was able to pass over the wing and thus affect the flow over the vertical tail whereas the inboard disturbance field was confined under the wing. At Mach numbers below 2.0 the outboard inlet shock wave passed far enough ahead of the vertical tail so that the tail was in a field of minor disturbances. At Mach numbers above 3.0 less of the outboard disturbance field went over the wing and the shock wave passed behind the vertical tail. The expansion field of the nacelle exit may also have a destabilizing influence. Further investigation is necessary to determine the portion of the interference effects contributed by each of these fields. Lateral characteristics. - The effects of reduced inlet mass flow operation upon lateral charactertistics of model 1 are illustrated in figures 6, 7, and 8. The primary effects were large incremental rolling moments with only slight changes in dihedral effect, $\partial C_1/\partial \beta$. The increments were a function of Mach number, inlet mass-flow ratio, angle of attack, and nacelle lateral position. Large incremental rolling moments occurred throughout the Mach number range for reduced flow through the inboard nacelle and at Mach numbers below 2.2 for the outboard nacelle. For Mach numbers of 2.0 to 3.5, zero flow through the inboard nacelle resulted in considerably larger incremental rolling moments than zero flow through the outboard nacelle. Interference effects accounted for most of the measured rolling moment. As indicated in figure 7 the incremental rolling moments were far greater than calculated for turning of the flow by the open nacelles (ref. 6). Rolling moments were produced which tended to raise the affected wing at Mach numbers above 2.0, and drop the affected wing at Mach numbers below 0.95, and between 1.2 and 2.0, as denoted in figures 6(a) and 7(a). Zero flow through the inboard nacelle at Mach number 3.0 produced an incremental rolling moment of 0.0015, which for an assumed aileron effectiveness of 0.0003 will require 50 of aileron deflection to trim. With this incremental rolling moment and a damping in roll value of -0.11 measured for the same configuration with unrestricted nacelles (unpublished data), a pb/2V value of 0.014 is obtained. At an assumed altitude of 70,000 feet a roll rate of about 0.8 radian per second will result for a 100-foot-span airplane. Incremental rolling moment was a significant function of angle of attack as indicated in figure 8. For Mach numbers greater than 2.0 and less than 1.0 the largest variations with angle of attack occurred for reduced mass flow through the outboard nacelle. Longitudinal characteristics. Effects of reduced mass flow operation of a nacelle upon pitching-moment characteristics of model 1 are presented in figures 9 through 12. A generally positive incremental pitching moment was produced by the inboard nacelle with significant increments occurring ¹The moment reference center chosen resulted in a longitudinally neutral or unstable configuration at Mach number 0.65. in the Mach number range of 1.0 and 2.0. The maximum increment for zero flow at supersonic speeds was equivalent to that produced by a change in angle of attack at about -1° . As indicated in figure 10, the calculated incremental pitching moment due to drag of a plugged inboard nacelle was negligible compared to interference effects. Variations in longitudinal static margin as a result of reduced flow are illustrated in figure 11. Zero flow through either nacelle produced at Mach number 1.0 a negative incremental $\partial C_m/\partial C_L$ (an increase in longitudinal static margin) of about 2-1/2 percent of mean aerodynamic chord. At all other Mach numbers incremental $\partial C_m/\partial C_L$ was 1 percent or less. A large incremental drag resulted from reduced flow. At zero flow conditions the nacelle is effectively a flat-faced cylinder. Incremental drag at zero lift is compared in figure 12 with calculated drag of an equivalent flat-faced cylinder obtained with the use of coefficients from reference 5. (Base drag has been removed from both sets of data.) The experimental incremental drag was generally higher than calculated. The best agreement was indicated for the outboard nacelle. For the inboard nacelle, interference effects increased the drag by about 100 percent at Mach number 0.65, and about 30 percent at supersonic Mach numbers. #### Models 2 and 3 It was expected that off-design mass-flow effects of the outboard nacelle for models 2 and 3 would be little different than for model 1 because the configurations varied only in location of the inboard nacelles. Consquently, the mass-flow ratio of the outboard nacelle was maintained at 1.0 and only the mass flow through the inboard nacelle was varied. Incremental changes in stability characteristics for models 2 and 3 were similar so the discussion is combined. No typical data curves are presented since the increments in forces and moments are small and are best illustrated in a summary form.
<u>Directional and lateral characteristics</u>.- Incremental yawing moments, as illustrated in the summary curves of figure 13, were equal to or less than that due to the drag of the blocked nacelle for all Mach numbers except near 2.0. Directional stability was only slightly affected by reduced flow conditions. Incremental rolling moments produced by reduced flow are illustrated in figure 14. For either nacelle location the measured rolling-moment increments were far greater than the small moments calculated for turning of the flow by the open nacelles. Zero flow through the inboard nacelle of either model at Mach number 3.0 resulted in an incremental rolling moment of -0.0012. This is about the same magnitude but of opposite sign to that for a plugged inboard nacelle in the aft position (model 1). Differences between these results are probably due to inlet and exit interferences. When the inlet was in the forward positions, the inlet disturbance field passed over the wing and the exit expansion field may have influenced the pressures on the underside of the wing. Rolling-moment increments did not diminish with the increased distance between the nacelle and wing of model 3. Longitudinal characteristics.- Pitch-down moment increments occurred for both configurations in the transonic Mach number range as shown in figure 15. Small pitch-up moments were indicated at Mach numbers above 1.3. The calculated moments due to drag of the blocked nacelle are small. A decrease in longitudinal static margin of about 2 percent of mean aerodynamic chord occurred near Mach number 1.0 with zero flow condition for either model, as illustrated in figure 16. Static margin changed less than 1 percent at all other Mach numbers. For most of the Mach number range, incremental drag for zero flow agrees reasonably well with calculated values as illustrated in figure 17. The agreement is better than for the same nacelle in the aft position (model 1, fig. 12(a)). Incremental drag is independent of nacelle vertical position. #### Model 4 Model 4 was similar to model 1 in that all nacelles were aft; however, it differed in that twin vertical tails, no afterbody, and deflected wing tips were incorporated. Since the incremental results at low and high Mach numbers conformed closely to those of model 1, no data were obtained at Mach numbers 1.6 and 2.0. In addition, the partial flow condition was omitted since results from model 1 indicated that the increments produced were similar, with a reduced magnitude, to those of zero flow. Directional and lateral characteristics. Effects of off-design inlet mass flow on directional and lateral characteristics are presented in figures 18, 19, and 20. Incremental yawing moments were small and less than calculated for Mach numbers below 1.4 as shown in figure 20(a). For the Mach number range from 2.5 to 3.5, fair agreement is shown for the inboard nacelle plugged but not for the outboard nacelle plugged and the incremental moments are similar to those of model 1 (fig. 5). The typical data presented in figure 18 indicate that directional stability was only slightly affected by plugging either nacelle. This is somewhat surprising since the deflected wing tip is close to the outboard nacelle and the left vertical tail is enveloped by the outboard inlet disturbance field which passes over the wing. The tabulated data presented in table VI indicate that, unlike the other models, rudder deflection will be required at Mach number 3.5 to trim the incremental yawing moment produced by zero flow through the outboard nacelle. The model was directionally unstable at Mach number 3.5 at sideslip angles greater than 6° . As shown in figure 20(b), the interference effects on lateral stability were found to be similar to those of model 1 (fig. 8). The plugged inboard nacelle produced large positive increments in rolling moment at the high Mach numbers. As with model 1, the incremental rolling moments were far greater than those attributable to turning of the flow by the open nacelles. Longitudinal characteristics. The effects of off-design mass flow upon longitudinal characteristics are shown in figures 21 and 22. Significant incremental pitching moments at zero lift were produced by the inboard nacelle for Mach numbers 1.0 and 3.5. The incremental moments were equivalent to those resulting from a change in angle of attack of -3° and $+3-1/2^{\circ}$ at Mach numbers 1.0 and 3.5, respectively. Zero flow through either nacelle increased longitudinal static margin about 4 percent at Mach number 1.0. Static margin was decreased about 1 percent at Mach number 3.5. Incremental drag from zero flow through either nacelle is similar to that of model 1 (fig. 12). ### Model 5 The limited data at Mach numbers 2.5, 3.0, and 3.5 obtained for model 5 are presented in table VII. #### CONCLUDING REMARKS The following observations are indicated by the experimental results herein presented. Large yawing moments were produced at Mach numbers greater than 2.0 by reduced mass flow through an outboard nacelle. These yawing moments are believed to result from (1) interference effects on the vertical tail, adjacent nacelle, and fuselage, and (2) drag of the blocked nacelle. Important but smaller yawing moments resulted when an inboard nacelle in the aft position was blocked. Reduced mass flow through an inboard nacelle in the aft position produced large wing-up rolling moments at Mach numbers above 2.0 and wing down rolling moments at Mach numbers below 2.0. Wing-down rolling moments occurred when the inboard nacelle in the forward position was blocked. Significant incremental pitching moments at zero lift near Mach number 1.0 were produced when the mass flow of the inboard nacelle was reduced. Large changes in longitudinal static margin resulted from reduced mass flow for all configurations at Mach number 1.0. Blocking an aft nacelle increased the longitudinal static margin while blocking a nacelle in the forward position reduced it. Interference effects of off-design inlet mass-flow conditions were found to be a function of nacelle placement relative to other components such as the fuselage, wing, and vertical tail, and in addition were found to be a function of α , β , Mach number, and inlet mass-flow ratio. Ames Research Center National Aeronautics and Space Administration Moffett Field, Calif., Aug. 7, 1962 #### REFERENCES - 1. Smith, Willard G., and Ball, Louis H.: Static Lateral-Directional Stability Characteristics of Five Contemporary Airplane Models From Wind-Tunnel Tests at High Subsonic and Supersonic Speeds. NACA RM A55J03, 1956. - 2. Robinson, Ross B., and Spearman, M. Leroy: Static Lateral and Directional Stability and Control Characteristics of a 1/40-Scale Model of a 60° Delta Wing Bomber Configuration at a Mach Number of 1.99. NASA TM X-537, 1961. - 3. Fletcher, LeRoy S.: Static Stability Characteristics of a Delta-Winged Configuration With a Canard Control and Nacelles at Mach Numbers From 0.25 to 3.50. NASA TM X-651, 1962. - 4. Main-Smith, J. D.: Chemical Solids as Diffusible Coating Films for Visual Indication of Boundary Layer Transition in Air and Water. R.A.E. Rep. Chem. 466, 1950. - 5. Hoerner, Sighard F.: Fluid-Dynamic Drag. Published by Author, 1958. - 6. Brown, Clinton E., and Parker, Hermon M.: A Method for the Calculation of External Lift, Moment, and Pressure Drag of Slender Open-Nose Bodies of Revolution at Supersonic Speeds. NACA Rep. 808, 1945. # TABLE I.- GEOMETRIC CHARACTERISTICS | Wing | | |--|--------| | | | | Leading-edge sweep, deg | 59.0 | | Trailing-edge sweep, deg | -10.0 | | Total area, sq in. | 349.67 | | Mean aerodynamic chord, in | 16.91 | | Span, in | 27.57 | | Aspect ratio | 2.17 | | Taper ratio | 0 | | Root chord, in | 25.37 | | Tip chord, in | 0 | | Dihedral, deg | 0 | | Incidence, deg | 0 | | Airfoil section Hexagon with thickness co | nstant | | from 30 to 70 p | | | Thickness, percent | 3.0 | | Deflected tip | J. V | | Span, in. | 3.45 | | Root chord, in. | 6.34 | | Area, sq in. (single surface only) | 10.93 | | Hinge-line station | | | Deflection angle, deg | 60.0 | | Fuselage | 00.0 | | 1 9 | | | Cross section | rcutar | | | | | Centerbody shape | aricar | | | ED (0 | | With afterbody | 57.60 | | Without afterbody | 47.93 | | Maximum diameter, in. | 3.6 | | Maximum cross-sectional area, sq in | 10.18 | | Fineness ratio | _ | | With afterbody | 16.0 | | Without afterbody | 13.3 | | Canard | | | Leading-edge sweep, deg | 63.4 | | Total area, sq in | 39.16 | | Exposed area, sq in. | 22.80 | | Mean aerodynamic chord, in | 5.90 | | Span, in | 8.85 | | Aspect ratio | 2.00 | | Taper ratio | 0 | | Root chord, in. | 8.85 | | Tip chord, in. | 0,0) | | Airfoil section Hexagon with thickness con | - 1 | | from 30 to 70 pe | | | Thickness, percent | 3.0 | | |). 🗸 | | 77 1 2 3 1 2 3 | | |--|---------| | Vertical tail | | | (Single and twin verticals are same except as noted) | 60.0 | | Leading-edge sweep, deg | 80.0 | | Exposed area, sq in | 1,7 1,0 | | Single | 41.42 | | Each twin | 42.13 | | Span, in | 5.65 | | Aspect ratio | | | Single | | | Twin | | | Taper ratio | 0.336 | | Root chord, in | 10.97 | | Tip chord, in | 3.69 | | Airfoil section Hexagon with thickness co | | | from 30 to 70 j | | | Thickness, percent | | | Single | | | Root | 4.5 | | Tip | 3.0 | | Twin | 3.1 | | Root and tip | 3.0 | | Nacelles | | | Cross section | ircular | | Length, in. | 12.28 | | Maximum diameter, in. | 1.60 | | | 2.01 | | Maximum cross-sectional area, sq in | 1.54 | | Inlet area, sq in | T-)4 | | Exit area, sq in. | 1.54 | | $m/m_{\infty} = 1.0 \dots \dots \dots \dots \dots \dots$ | - | | $m/m_{\infty} \approx 0.3$ | 0.33 | | $m/m_{\infty} = 0 \dots \dots \dots \dots \dots \dots$ | 0 | | Lip angle, deg | 1.4 | | Boattail angle, deg | 2.9 | | Wing spanwise location | | | Inboard | .36
b/2 | | Outboard | .62 b/2 | Note: Mass flow refers to left wing nacelles only, right wing nacelles always open # TABLE II. - NACELLE LOCATION, MASS FLOW KEY, AND INDEX TO TABULATED DATA - Concluded TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1c_1V_1N_1$) | α, deg β | ·T | (8 | | 'low cont' | (a) Mass flow configuration NIA; Aft. | | | | | | | | | | |---------------------------------------|--|--|--|--|--|--|--|--|---|---|--|--|--|--| | α, deg β | - | (a) Mass flow configuration NIA; Aft $m_{\rm I}/m_{\infty}=1.0$, $m_{\rm O}/m_{\infty}=1.0$ | | | | | | | | | | | | | | | 3, deg | C _L | c _D | Сm | СY | Cn | c, | $^{\mathtt{C}}\mathtt{D}_{\mathtt{b_{F}}}$ | cDp1 | c ^D pO | | | | | | M = 0.65 | | | | | | | | | | | | | | | | -02.1
00.0
02.1
04.3 | 00.0
00.0
00.0
00.0
00.0 | -0.232
-0.123
-0.026
0.077
0.186
0.411 | .0285
.0176
.0140
.0164
.0263
.0729 | .0135
.0120
.0124
.0144 | -0.002
-0.002
-0.001
-0.001
-0.001 | 0004
0003
.0000
.0002
.0001 | .0004
.0003
.0004
.0003
.0004 | .0016
.0017
.0017
.0018
.0018 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | 03.2 -0
03.2 0
03.2 0
03.2 0 | 04.0
02.0
00.0
01.9
03.9
05.9 | 0.129
0.133
0.131
0.128
0.123
0.123 | .0194
.0201
.0205
.0200
.0192
.0196 | .0130
.0129
.0123 | 0.036
0.016
-0.002
-0.019
-0.041
-0.063 | 0135
0063
.0000
.0059
.0132
.0217 | .0064
.0034
.0003
0024
0055 | .0019
.0018
.0017
.0018
.0020 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | | | · | | M = 0.85 | | | - | | 1 | | | | | | -02.2
00.0
02.2
04.4 | 00.0
00.0
00.0
00.0
00.0 | -0.254
-0.137
-0.027
0.089
0.208
0.446 | .0307
.0182
.0139
.0171
.0284
.0803 | .0183
.0144
.0124
.0123 | -0.002
-0.002
-0.001
-0.002
-0.001
-0.001 | 0004
0003
.0000
.0002
.0001 | .0004
.0004
.0004
.0004
.0004 | .0016
.0016
.0019
.0017
.0019
.0023 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | 03.3 -0
03.3 0
03.3 0 | 04.0
02.0
00.0
01.9
03.9
05.9 | 0.148
0.149
0.147
0.143
0.140
0.137 | .0209
.0209
.0212
.0211
.0205
.0199 | .0122
.0119 | | 0143
0066
.0000
.0062
.0140
.0227 | .0072
.0038
.0004
0028
0061
0096 | .0022
.0022
.0021
.0020
.0021 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | | | | | M = 0.95 | | | | | | | | | | | -02.2
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.273
-0.145
-0.027
0.101
0.236
0.492 | .0336
.0205
.0150
.0181
.0320 | .0247
.0166
.0086
.0041 | -0.002 | 0002
0004
0001
.0002
.0001 | .0002
.0003
.0003
.0004
.0004 | .0018
.0015
.0018
.0019
.0017 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | 03.4 0
03.3 0
03.3 0
03.3 0 | 04.0
02.0
00.0
01.9
03.9
05.9 | 0.171
0.172
0.169
0.165
0.165
0.162 | .0235
.0240
.0237
.0235
.0236 | .0056
.0056
.0060 | | 0149
0068
.0001
.0066
.0148
.0239 | .0080
.0042
.0004
~.0032
0071
0110 | .0022
.0021
.0020
.0021
.0022 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | | | | | M = 1.00 | | | | | | | | | | | -02.2
00.0
02.2
04.4
06.7 | 00.0
00.0
00.0
00.0
00.0
00.0 | -0.278
-0.149
-0.026
0.107
0.243
0.384
0.529 | .0645 | .0273
.0158 | -0.001
-0.001
-0.001 | 0004
0005
0001
.0002
.0000
0001 | .0004
.0003
.0004
.0004
.0005
.0006 | .0010
.0012
.0010
.0012
.0011
.0012 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | 03.3 -6
03.3 6
03.3 6 | 04.0
02.0
00.0
01.9
03.9
05.9 | 0.175
0.178
0.175
0.175
0.178
0.179 | .0310
.0308
.0311
.0309 | 0033
0036
0035
0036
0044
0049 | 0.018
-0.002
-0.021 | | .0079
.0041
.0004
0030
0069
0108 | .0013
.0013
.0013
.0011
.0014 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | (a) Mass-flow configuration $N_{\rm LA}$; $m_{\rm I}/m_{\infty}=1.0$, $m_{\rm O}/m_{\infty}=1.0$ - Continued | | | | | | | | | | |--|--|--|---|---|---|--|--|---|--|--| | α, đeg | β, deg | c _L | c _D | C _m | СХ | C _n | Cı | $^{\mathtt{C}_{\mathrm{D}_{\!b_{\mathrm{F}}}}}$ | c _{Dp1} | CD ^{pO} | | | | | | | M = 1.10 | | | | | - | | -04.4
-02.2
00.0
02.2
04.5
06.7
09.0 | 00.0
00.0
00.0
00.0
00.0
00.0 | -0.268
-0.145
-0.021
0.110
0.241
0.372
0.502 | .0398
.0260
.0215
.0258
.0399
.0643 | .0407
.0295
.0132
0007
0133
0228
0331 | -0.001
-0.001 | 0006
0004
0002
.0002
.0000
0001 | .0004
.0003
.0004
.0004
.0006
.0005 | .0057
.0054
.0055
.0053
.0055
.0058 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -06.0
-04.0
-02.0
00.0
01.9
03.9
05.9 | 0.179
0.178
0.179
0.177
0.176
0.178
0.178 | .0302
.0307
.0310
.0311
.0315
.0314 | 0076
0086 | 0.063
0.040
0.018
-0.002
-0.022
-0.044
-0.068 | 0250
0158
0074
.0001
.0073
.0156
.0252 | .0121
.0080
.0041
.0003
0033
0072
0112 | .0063
.0061
.0060
.0058
.0055
.0058 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.25 | | | | | | | -04.4
-02.2
00.0
02.2
04.5
06.7
09.0 | 00.0
00.0
00.0
00.0
00.0
00.0 | -0.242
-0.127
-0.012
0.109
0.236
0.365
0.485 | .0368
.0242
.0201
.0242
.0376
.0619 | ~.0221
~.0347 | 0.000
0.000
-0.001
-0.001 | | •0004
•0005 | .0058
.0054
.0052
.0051
.0056
.0059 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3 | -06.0
-04.0
-02.0
00.0
01.9
03.9
05.9 | 0.175
0.176
0.179
0.173
0.173
0.175
0.175
0.175 | .0285
.0292
.0298
.0292
.0292
.0291
.0290 | 0151
0149
0153
0155
0152 | 0.042 | 0261
0164
0077
.0001
.0074
.0161
.0260 | .0070
.0036
.0004
0026
0059 | .0062
.0060
.0058
.0057
.0056
.0059
.0059 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | 1 | | | | 1 | | | <u></u> | L | L | | -04.4
-02.1
00.0
02.2
04.5
06.7
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.215
-0.105
0.002
0.113
0.226
0.340
0.450 | .0232
.0198
.0237
.0361
.0577 | .0215
.0059
0081
0211
0334 | -0.001
-0.002
-0.002
-0.001 | .0005
.0007
.0008
.0009
.0006 | .0001
.0002
.0002
.0003 | .0053
.0052
.0051
.0050
.0051
.0053 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3 | 05.9 | 0.162 | •0277
•0283
•0279
•0279
•0280
•0279 | 0146
0142
0144
0152 | 0.043 | 0171
0080
.0006
.0089
.0179 | .0060
.0032
.0004 | .0056 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | <u> </u> | TABLE 111 AERODINAMIC CHARACTERISTICS OF MODEL I (FIWlc1v1m1) - Continued | | | | | | | | | | |--|---|--|---|--|--|---|--|---
--|--| | | | | | | figuration | | Aft
O O | <u> </u> | | | | α, deg | β, deg | $c_{ m L}$ | $c_{\mathtt{D}}$ | Cm | c _Y | Cn | cı | c _{DbF} | $c^{D^{p_1}}$ | c ^{DpO} | | M = 1.60 | | | | | | | | | | | | -04.2
-02.1
00.0
02.1
04.2
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.190
-0.093
0.001
0.095
0.195
0.394 | .0313
.0216
.0187
.0222
.0324
.0762 | .0285
.0161
.0033
0090
0214
0430 | -0.002
-0.001
-0.001
-0.001
0.000
0.000 | .0003
.0000
.0002
.0004
.0003 | .0009
.0009
.0009
.0010
.0008 | •0045
•0045
•0044
•0044
•0045 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -05.9
-03.9
-01.9
00.0
02.0
04.0
06.0
08.0 | 0.140
0.142
0.141
0.146
0.151
0.151
0.152
0.157 | .0257
.0259
.0259
.0264
.0267
.0268
.0268 | 0163
0162
0161 | 0.000
-0.022
-0.045
-0.067 | 0247
0165
0074
.0002
.0083
.0170
.0251
.0329 | .0078
.0058
.0033
.0009
0014
0040
0063
0085 | •0051
•0049
•0046
•0044
•0046
•0049
•0052 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 2.00 | | | | | | | -04.2
-02.1
00.0
02.1
04.2
08.5 | 00.0
00.0
00.0
-00.1
-00.1 | -0.159
-0.079
0.001
0.084
0.169
0.335 | .0286
.0202
.0175
.0209
.0302
.0675 | .0222
.0126
.0018
0083
0180 | -0.002
-0.002
-0.002
-0.002 | .0013
.0012
.0011
.0013
.0013 | .0005
.0005
.0005
.0006
.0005 | .0036
.0035
.0035
.0035
.0036 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.1
03.1
03.1
03.1
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
-01.9
03.9
05.9
07.9 | 0.122
0.125
0.125
0.129
0.132
0.131
0.131 | •0253
•0254 | 0130 | 0.033
0.014
-0.002
-0.020
-0.039
-0.058 | 0152
0094
0035
.0017
.0071
.0122
.0171 | .0058
.0041
.0022
.0006
0013
0031
0050 | .0040
.0039
.0038
.0036
.0037
.0038
.0040 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 2.50 | | | | | | | -06.4
-04.3
-02.2
-00.1
01.9
04.0
06.1
08.2 | 00.0
00.0
00.0
00.0
00.0
00.0
00.0 | -0.200
-0.136
-0.071
-0.005
0.064
0.132
0.199
0.267 | .0379
.0259
.0185
.0156
.0180
.0254
.0378 | •0205
•0153
•0084 | -0.003
-0.003
-0.002
-0.002
-0.001
-0.001 | .0002
.0001
.0001
.0000
0001
0001 | .0002
.0002
.0002
.0002
.0002
.0002 | .0036
.0036
.0036
.0036
.0036
.0037 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.096
0.096
0.096
0.098
0.097
0.098
0.096
0.095 | .0211
.0213
.0214 | 0107
0109
0106
0106
0107
0110
0111 | -0.002
-0.017
-0.033
-0.050 | .0062
.0092 | .0042
.0028
.0015
.0002
0012
0024
0038
0048 | .0037
.0036
.0036
.0036
.0037
.0037 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(\mathbf{F_1W_1C_1V_1N_1})$ - Continued | | | | · | | | | , 111. | | | | |---|---|--|---|--|--|--|--|---|--|--| | (a) Mass-flow configuration N _{1A} ; $m_{\rm I}/m_{\infty}=1.0$, $m_{\rm O}/m_{\infty}=1.0$ - Concluded \odot | | | | | | | | | | | | α, deg | β, deg | C _L | c _D | c_{m} | $c_{\mathbf{Y}}$ | C _n | c s | $^{\mathrm{c}_{\mathrm{D_{b_{\mathrm{F}}}}}}$ | c ^{DP1} | c _{DpO} | | | | | | | M = 3.00 | | | | | | | -06.3
-04.3
-02.2
-00.1
01.9 | 00.1
00.1
00.1
00.1
00.1 | -0.168
-0.113
-0.057
0.000
0.058 | .0335
.0231
.0166
.0141
.0165 | .0097
.0051
0002
0052 | 0.000 | .0000
.0000
.0000
0001 | .0001
.0001
.0001
.0001 | .0030
.0030
.0029
.0029 | .0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.9
06.0
08.1 | 00.1
00.1
00.1 | 0.114
0.172
0.231 | .0231
.0339
.0493 | 0143 | -0.001
-0.001
-0.001 | 0002
0003
0003 | .0002
.0002
.0002 | •0029
•0029
•0029 | •0000 | •0000
•0000 | | -06.2
-04.1
-02.0
00.0
02.0
04.1
06.2
08.2 | 06.3
06.2
06.2
06.2
06.3
06.3
06.3 | -0.171
-0.113
-0.056
-0.000
0.056
0.113
0.173
0.231 | .0337
.0230
.0169
.0150
.0172
.0236
.0346 | .0092
.0043
0002
0054
0108 | -0.060
-0.055
-0.051
-0.049
-0.048
-0.049
-0.050 | .0101
.0083
.0066 | 0022
0026
0031
0034
0033
0034
0036 | .0031
.0031
.0030
.0030
.0031
.0031
.0032 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.7
02.8
02.9
02.9
03.0
03.0
03.0 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.2
08.3 | 0.084
0.084
0.085
0.085
0.085
0.084
0.084 | .0192
.0191
.0190
.0191
.0194
.0197
.0199 | 0077
0073
0073
0074
0078
0081 | 0.028
0.013
-0.001
-0.015
-0.031 | 0057
0038
0021
0002
.0018
.0037
.0056
.0081 | .0037
.0025
.0014
.0001
0011
0023
0033 | .0031
.0030
.0028
.0029
.0030
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.8
04.9
05.0
05.0
05.1
05.2 | -06.0
-01.9
00.1
02.1
04.2
08.3 | 0.142
0.141
0.143
0.143
0.143
0.143 | .0276
.0275
.0278
.0281
.0284
.0289 | 0136
0119
0119
0121
0128
0135 | -0.031 | 0038
0015
0003
.0011
.0024
.0063 | | .0032
.0031
.0030
.0030
.0030 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | _ | | | M = 3.50 | | | | | | | -06.3
-04.2
-02.2
-00.1
01.8
03.9
06.0
08.0 | 00.0
00.0
00.0
00.0
00.0
00.0 | -0.149
-0.101
-0.052
-0.003
0.047
0.097
0.147
0.197 | .0295
.0200
.0142
.0121
.0141
.0200
.0295 | .0069
.0036
0004
0042
0078 | -0.002
-0.002
-0.002 | .0003
.0003
.0003
.0002
.0002
.0002
.0002 | .0001
.0001 | .0024
.0023
.0023
.0023
.0022
.0022
.0022 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 02.5
02.6
02.7
02.9
03.0
03.2
03.3
03.4 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.070
0.071
0.070
0.072
0.071
0.071
0.070
0.070 | •0174
•0176 | 0062
0060
0059
0061
0064
0063 | 0.028
0.013
-0.002
-0.017
-0.032 | 0029
0015
.0002
.0018
.0031 | .0024
.0012
.0001 | .0023
.0023
.0023
.0022
.0022
.0022
.0024 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | | | | flow conf | | | Aft | L _{M1}) = 00 | | | |--|--|---|--|--|--|---|--|--|---|----------------------------------| | | - | | $m_{\rm I}/m_{\infty}$ | ≈ 0.3, m | $m_0/m_\infty = 1$ | .0 - | 00 |)
 | | | | α, deg | β, deg | $c_{\mathbf{L}}$ | $c_{\mathtt{D}}$ | Cm | CY | Cn | cı | C _{DoF} | c _D pI | c _D pO | | | | | | 1 | 1 = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.222
-0.118
-0.022
0.083
0.193
0.414 | .0316
.0210
.0171
.0200
.0305
.0771 | .0155
.0163
.0146
.0147
.0167
.0277 | 0.000
0.001
0.000 | 0006
0006
0003
0001
0002 | .0004
.0006
.0004
.0001
.0002 | .0017
.0016
.0017
.0016
.0017 | .0002
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.138
0.139
0.136
0.135
0.133
0.130 |
.0236
.0238
.0237
.0241
.0237
.0233 | .0146 | 0.018 | 0137
0065
0002
.0057
.0131 | .0064
.0033
.0002
0027
0057
0088 | .0019
.0019
.0019
.0018
.0021 | .0002
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000 | | | | · | | | M = 0.85 | | | | | | | -04.3
-02.1
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.246
-0.128
-0.017
0.096
0.216
0.457 | .0337
.0214
.0179
.0209
.0332
.0869 | .0236
.0209
.0165
.0146
.0146 | -0.001
-0.001
0.000
0.000
0.001
0.002 | 0004
0001
0001 | .0005
.0004
.0003
.0003
.0002 | .0018
.0018
.0018
.0018
.0018 | .0002
.0002
.0002
.0002
.0001 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.156
0.159
0.156
0.153
0.151
0.148 | .0254
.0257
.0258
.0257
.0254 | •0136 | 0.018
0.000
-0.018 | 0068
0003
.0060
.0138 | .0072
.0036
.0003
0030
0064
0100 | .0021
.0021
.0020
.0019
.0022
.0023 | .0001
.0002
.0001
.0001
.0002 | .0000
.0000
.0000
.0000 | | | | | | | M = 0.95 | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.270
-0.138
-0.020
0.110
0.242
0.501 | .0380
.0234
.0185
.0225
.0361 | .0373
.0255
.0163
.0097
.0061 | 0.000
0.000
0.000 | 0004
0002
0003 | .0011
.0008
.0003
.0002
.0003 | .0016
.0016
.0017
.0017
.0021 | .0000
.0000
.0001
.0000
.0001 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.00 | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.275
-0.144
-0.021
0.116
0.257
0.538 | .0452
.0313
.0259
.0297
.0449 | .0503
.0361
.0200
.0038
0110 | 0.000
0.000
0.001 | 0003
0002
0003 | 0011
0001
.0010
.0007
.0006
.0002 | .0009
.0008
.0007
.0007
.0007 | .0005
.0005
.0005
.0005
.0005 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4 | -02.0
00.0 | 0.188
0.189
0.188
0.182
0.180
0.177 | | 0034 | 0.020 | 0154
0073
0005
.0063
.0148
.0248 | | .0012
.0012
.0008
.0009
.0011
.0013 | .0004
.0004
.0005
.0005 | .0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | | | | | nfigurati | | Aft | | | | |--|---|---|---|---|--|---|--|---|---|--| | | T | mI. | $/m_{\infty} \approx 0$. | 3, mo/m∞ | = 1.0 - | Continue | i 0 0 | | | | | α, deg | β, deg | $c_{ t L}$ | c _D | Cm | СY | $c_{\mathbf{n}}$ | Cl | $^{^{\mathrm{C}}\mathrm{D}_{\mathrm{b}_{\mathrm{F}}}}$ | $c^{D^{p_1}}$ | c _D pO | | | | | | | M = 1.25 | | | | | | | -04.4
-02.1
00.0
02.3
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.229
-0.111
0.004
0.124
0.247
0.491 | .0404
.0281
.0247
.0295
.0430 | .0423
.0284
.0119
0039
0184
0401 | -0.002
-0.002
-0.001 | 0007
0003
.0004
.0007
.0002
0003 | 0009
0014
0014
0009
0002 | .0058
.0055
.0052
.0050
.0054 | .0008
.0008
.0008
.0009
.0010 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.183
0.187
0.186
0.183
0.184
0.182 | .0341
.0348
.0347
.0344
.0345 | 0087
0102
0112
0121
0134
0131 | 0.019
-0.002
-0.023
-0.047 | 0164
0075
.0004
.0082
.0175 | .0069
.0030
0005
0041
0079 | .0059
.0058
.0056
.0056
.0057 | .0010
.0009
.0010
.0010
.0010 | .0000
.0000
.0000
.0000 | | | * | t | | • | M = 1.40 | · | | | | <u> </u> | | -04.3
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.202
-0.093
0.014
0.121
0.237
0.457 | .0385
.0279
.0250
.0290
.0422
.0948 | .0354
.0232
.0074
0067
0204 | 0.000
-0.001
-0.002 | 0003
0002
.0003
.0010
.0011 | | .0053
.0052
.0051
.0049
.0049 | .0007
.0008
.0008
.0009
.0010 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.176
0.178
0.176
0.172
0.170
0.167 | .0336
.0334
.0334
.0331 | 0121
0131
0133
0131
0133
0127 | 0.019
-0.003
-0.024
-0.048 | 0171
0076
.0011
.0095
.0190
.0285 | .0051
.0018
0012
0040
0072
0102 | .0054
.0054
.0053
.0052
.0053 | .0010
.0010
.0010
.0010
.0011 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.60 | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.174
-0.081
0.011
0.105
0.203
0.399 | .0358
.0272
.0246
.0283
.0387
.0824 | .0169
.0048
0080
0197 | 0.000
0.000
0.000
0.001 | 0010
0013
0013
0011
0006
.0007 | | .0046
.0044
.0043
.0044
.0044 | .0009
.0009
.0010
.0010
.0010 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.3
03.3 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.150
0.150
0.149
0.156
0.158
0.157
0.157 | .0322
.0322
.0322
.0326
.0326
.0326
.0325 | 0136
0142
0137
0130 | 0.043
0.021
0.001
-0.021
-0.044
-0.067 | 0260
0175
0087
0007
.0077
.0166
.0253
.0327 | | .0050
.0048
.0046
.0044
.0044
.0047
.0050 | .0010
.0010
.0010
.0010
.0010
.0011 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 2.00 | **** | | | | | | -04.2
-02.0
00.0
02.1
04.2
08.5 | 00.0
-00.1
-00.1
-00.1
-00.1 | -0.146
-0.065
0.015
0.096
0.180
0.341 | .0337
.0258
.0238
.0279
.0376
.0754 | •0117
•0011
••0082 | -0.002
-0.002
-0.001 | .0005
.0003
.0005
.0008
.0010 | .0016
.0017
.0014
.0010
.0006
0004 | .0036
.0035
.0035
.0034
.0035
.0036 | .0006
.0006
.0006
.0006
.0006 | .0000
.0000
.0000
.0000 | | 03.1
03.2
03.2
03.2
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
01.8
03.8
05.9 | 0.134
0.136
0.136
0.137
0.142
0.138
0.136 | .0320
.0320
.0319
.0321
.0319 | 0127
0127
0130 | 0.033
0.014
-0.001
-0.019
-0.037
-0.056 | 0155
0098
0042
.0009
.0062
.0114
.0164
.0219 | .0063
.0046
.0026
.0008
0010
0029
0047
0064 | .0039
.0037
.0036
.0035
.0036
.0038
.0044 | .0007
.0006
.0006
.0006
.0006
.0006
.0007 | .0000
.0000
.0000
.0000
.0000
.0000 | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | | | b) Mass | -flow con | figuration | | Aft | \downarrow | | | |--|---|--|---|--|--|--|---|---|---|--| | α, deg | β, deg | $c_{\mathbf{L}}$ | c_{D} | C _m | СY | C _n | Cı | $^{\mathtt{C}}{}^{\mathtt{D}}\!b_{\mathbf{F}}$ | c _{Dp1} | c _D pO | | | | | | | M = 2.50 | | | | | | | -07.3
-04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.220
-0.125
-0.060
0.009
0.076
0.144
0.276 | .0466
.0299
.0231
.0218
.0251
.0334
.0648 | •0144 | -0.002 | .0003
0002
0005
0004
0005
0004 | .0011
.0016
.0013
.0018
.0018
.0018 | .0037
.0036
.0035
.0036
.0036
.0037 | .0005
.0005
.0005
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.110
0.111
0.109
0.111
0.110
0.109
0.108
0.106 | .0291
.0288
.0286
.0286
.0286
.0287
.0288 | 0120
0120
0112
0110
0110
0110
0108
0107 | 0.013
-0.002
-0.018
-0.033
-0.050 | 0093
0065
0034
0004
.0028
.0061
.0090
.0118 | .0058
.0044
.0031
.0019
.0005
0009
0024
0036 | .0037
.0037
.0037
.0037
.0037
.0037
.0038 | .0004
.0004
.0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | | | | -08.4
-04.3
-02.1
-00.1
01.9
04.0
08.1 |
00.1
00.1
00.1
00.1
00.1
00.1 | -0.216
-0.104
-0.047
0.012
0.069
0.127
0.241 | .0498
.0265
.0212
.0200
.0236
.0313
.0592 | 0013 | -0.002
-0.001
-0.001
-0.001
-0.002 | .0005
0003
0006
0006
0007
0007 | .0010
.0014
.0015
.0018
.0020
.0021 | .0032
.0031
.0030
.0030
.0029
.0030 | .0003
.0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.097
0.096
0.096
0.098
0.097
0.097
0.096
0.095 | .0272
.0270
.0268
.0268
.0269
.0272
.0274 | 0091
0087
0083
0085
0085
0088
0089 | 0.026
0.012
-0.002
-0.017
-0.030
-0.047 | 0057
0040
0023
0007
.0011
.0030
.0047 | .0056
.0044
.0032
.0020
.0008
0003
0014 | .0031
.0031
.0031
.0030
.0030
.0030 | .0003
.0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.50 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.088
-0.038
0.012
0.062
0.113
0.213 | .0236
.0192
.0184
.0219
.0292
.0543 | •0021 | -0.001
-0.001
-0.002 | 0001
0005
0008
0010
0010
0014 | .0014
.0016
.0018
.0020
.0022 | .0024
.0024
.0023
.0023
.0023 | .0002
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.086
0.086
0.087
0.087
0.088
0.087
0.087 | •0256
•0259 | 0069
0072
0073
0075
0076
0080
0084 | 0.027
0.012
-0.002
-0.016
-0.031
-0.046 | 0038
0025
0010
.0007
.0020 | .0054
.0044
.0032
.0021
.0011
.0000
0009 | .0024
.0024
.0024
.0023
.0023
.0023
.0024 | .0002
.0002
.0002
.0002
.0002
.0002
.0001 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1W_1$) - Continued | ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; | (c) Mass-flow configuration N_{1C} ; $m_{\overline{1}}/m_{\infty} = 0$, $m_{\overline{0}}/m_{\infty} = 1.0$ | | | | | | | | | | | |--|--|---|--|---|---|---|---|--|--|---|--| | α, deg | β, deg | $c_{\mathbf{L}}$ | c _D | c _m | СY | Cn | Сı | $^{\mathtt{C}}\mathrm{D}_{\mathtt{b_{F}}}$ | сърІ | c _D pO | | | | | | | | M = 0.65 | | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.225
-0.122
-0.022
0.084
0.193
0.414 | .0333
.0225
.0187
.0217
.0322
.0792 | .0167
.0172
.0153
.0154
.0176 | -0.001
0.000
0.000
0.000
0.001
0.002 | 0006
0005
0002
0001
0002 | .0005
.0005
.0003
.0001
.0000 | .0016
.0015
.0018
.0016
.0016 | .0002
.0002
.0003
.0002
.0002 | .0000
.0000
.0000
.0000 | | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.137
0.140
0.139
0.136
0.135
0.132 | .0254
.0259
.0261
.0260
.0257
.0252 | •0155
•0150 | 0.037
0.017
0.000
-0.018
-0.039
-0.062 | .0132 | .0064
.0031
.0001
0028
0059
0090 | .0018
.0018
.0018
.0018
.0021
.0022 | .0002
.0002
.0002
.0002
.0003 | .0000
.0000
.0000
.0000 | | | | | | | | м = 0.85 | | | | | Ī | | | -04.4
-02.1
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.245
-0.133
-0.022
0.092
0.212
0.451 | .0357
.0230
.0189
.0218
.0338
.0871 | .0241
.0216
.0172
.0153
.0153 | | 0005
0005
0001
.0000
0001
.0002 | .0007
.0005
.0004
.0002
.0000 | .0016
.0016
.0017
.0018
.0018 | .0001
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000 | | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.152
0.153
0.150
0.147
0.147
0.145 | .0264
.0263
.0262
.0262
.0262
.0259 | •0147
•0142 | | •0062 | .0036
.0001
0031
0065 | .0021
.0021
.0020
.0019
.0021
.0023 | .0002
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000 | | | | | | | | M = 0.95 | | | | | | | | -04.4
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.269
-0.132
-0.011
0.113
0.247
0.514 | .0400
.0254
.0206
.0241
.0386
.1025 | .0391
.0253
.0138
.0096
.0036 | -0.001 | 0007
0004
0002
0001
0002
.0002 | .0010
.0007
.0007
.0004
.0000 | .0016
.0015
.0016
.0017
.0018 | .0000
.0000
.0001
.0001
.0001 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | M = 1.00 | ı | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.277
-0.151
-0.023
0.111
0.252
0.535 | .0474
.0324
.0278
.0312
.0454
.1097 | .0389 | -0.002
-0.001
-0.001 | 0004
.0000
.0000
0001
0003 | 0015
0005
.0009
.0009
.0007 | .0009
.0010
.0006
.0006
.0007 | .0006
.0006
.0005
.0005
.0005 | .0000
.0000
.0000
.0000 | | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.184
0.185
0.182
0.178
0.178
0.175 | .0363
.0363
.0367 | 0015
0016 | 0.019 | 0153
0071
0003
.0063
.0150
.0245 | .0044
.0008
0027
0066 | .0010
.0010
.0009
.0007
.0012
.0013 | •0005
•0005
•0005
•0005
•0006
•0006 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | - | | | ALTONOMIC SANDESSE | | | | (FIWICIV | | | | |--|--|--|---|--|---|--|---|---|---|---| | | | m | (c) Mass. $I/m_{\infty} = 0,$ | -flow con, $m_0/m_\infty =$ | figuratio | on N _{lC} ;
ontinued | Aft
O • | \Diamond | | | | α, deg | β, deg | C _L | с _D | C _m | СY | C _n | cı | c _{Db} F | $^{\mathtt{C}_{\mathbf{D_{b_{I}}}}}$ | с _{БрО} | | | | | | | M = 1.25 | | | | | | | -04.3
-02.1
00.0
02.3
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.225
-0.111
0.004
0.121
0.245
0.486 | .0425
.0306
.0271
.0312
.0450 | .0434
.0302
.0140
0014
0159 | -0.001
-0.001
-0.003
-0.003
-0.002
0.001 | 0005
0003
.0004
.0009
.0004 | 0014
0021
0020
0014
0005 | •0054
•0052
•0050
•0052
•0053
•0058 | .0008
.0008
.0008
.0009
.0009 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.183
0.184
0.183
0.182
0.184
0.182 | .0368
.0368
.0365
.0367
.0365 | | | ~.0164
~.0073
.0007
.0087
.0180
.0278 | .0068
.0028
0010
0047
0086
0122 | .0057
.0056
.0054
.0054
.0057 | .0009
.0009
.0009
.0010
.0010 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.40 | | | | | | | -04.3
-02.1
00.0
02.3
04.5
08.9 | 00.0
00.0
00.0
00.0
00.0
-00.1 | -0.199
-0.094
0.009
0.120
0.234
0.452 | .0406
.0299
.0266
.0310
.0440 | .0364
.0241
.0095
0051
0185
0405 | 0.000
0.000
-0.002
-0.003
-0.003 | | 0005
0012
0018
0020
0019
0016 | •0052
•0052
•0052
•0050
•0049
•0052 | .0007
.0007
.0007
.0008
.0008 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.176
0.179
0.177
0.173
0.172
0.170 | .0361
.0364
.0360
.0358
.0356
.0353 | | -0.026
-0.050 | 0167
0073
.0013
.0099
.0195
.0289 | .0046
.0013
0019
0048
0080 | .0053
.0053
.0052
.0051
.0052
.0054 | .0007
.0008
.0008
.0009
.0009 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.60 | | , | | | | | -04.2
-02.1
00.0
02.1
04.3
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.173
-0.079
0.013
0.107
0.205
0.398 | .0378
.0290
.0267
.0304
.0410
.0848 | | 0.001
0.001 | 0015
0014
0007
0001 | .0017
.0011
.0002
0001
0006
0017 | .0045
.0044
.0043
.0043
.0043 | .0006
.0006
.0006
.0007
.0007 |
.0000
.0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.154
0.153
0.153
0.155
0.159
0.159
0.156
0.158 | .0345
.0347
.0346
.0347
.0348
.0346
.0342 | 0104
0114
0120
0128
0131
0125
0123
0112 | 0.041
0.020
0.001
-0.021
-0.044
-0.066 | 0256
0168
0082
0003
.0079
.0168
.0252
.0329 | 0030
0054
0080 | .0050
.0047
.0045
.0044
.0046
.0050 | .0006
.0006
.0006
.0007
.0007
.0008 | .0000
.0000
.0000
.0000
.0000 | | | *************************************** | | | | M = 2.00 | | • | | | | | -04.1
-02.0
00.0
02.1
04.3
08.5 | 00.0
-00.1
-00.1
-00.1
-00.1 | -0.143
-0.061
0.019
0.100
0.182
0.342 | .0340
.0279
.0263
.0306
.0408
.0785 | .0220
.0124
.0022 | -0.002
-0.001
-0.001
-0.001
-0.001 | | .0018
.0013
.0007 | .0037
.0035
.0035
.0035
.0036 | .0005
.0006
.0006
.0006
.0006 | .0000
.0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
01.8
03.8
05.9
07.9 | 0.139
0.141
0.139
0.141
0.143
0.142
0.139
0.137 | .0353
.0351
.0348
.0348
.0349
.0348
.0343 | 0116
0112
0104 | 0.034 | 0044
.0012
.0065
.0116 | .0044
.0024
.0005
0014
0034 | .0039
.0038
.0036
.0036
.0037
.0039
.0042 | .0007
.0007
.0006
.0006
.0006
.0006
.0007 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | <u></u> | <u> </u> | | *************************************** | L | | <u> </u> | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(F_1 W_1 C_1 V_1 N_1)$ - Continued | | | , | | | | | 4.0. | l | | | |--|---|--|---|--|---|---|---|--|--|---| | | | | | | iguration
1.0 - Cor | | O O |) | | | | α, deg | β, deg | c _L | СD | C _m | СY | C _n | c, | $^{\mathrm{C}_{\mathrm{D}_{\mathrm{b}_{\mathrm{F}}}}}$ | $c^{D^{p_{I}}}$ | c _D pO | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.119
-0.054
0.014
0.081
0.148
0.279 | .0313
.0255
.0244
.0282
.0365
.0683 | .0152
.0086
.0005
0065
0128
0237 | 0.000
0.000 | 0007
0010
0011
0011
0010
0009 | .0017
.0016
.0018
.0017
.0015 | .0036
.0036
.0036
.0037
.0038 | .0006
.0006
.0006
.0006
.0005 | .0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.115
0.115
0.114
0.115
0.114
0.112
0.110
0.107 | •0313
•0311 | 0108
0107
0101
0097
0096
0094
0091 | -0.030
-0.047 | .0021
.0053
.0083 | .0058
.0044
.0030
.0016
.0000
0014
0028 | .0036
.0037
.0037
.0037
.0037
.0037
.0037
.0038 | .0006
.0006
.0006
.0006
.0006
.0006 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | | | | -04.2
-02.2
-00.1
01.9
04.0
08.1 | 00.1
00.1
00.1
00.1
00.1
00.1 | -0.097
-0.040
0.018
0.075
0.131
0.244 | .0285
.0236
.0233
.0272
.0349
.0629 | .0104
.0054
0003
0051
0093
0185 | 0.001
0.001
0.001 | 0009
0013
0015
0016
0016
0019 | .0016
.0016
.0017
.0017
.0016 | .0031
.0030
.0030
.0029
.0030 | .0005
.0005
.0005
.0005
.0004 | .0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.103
0.103
0.102
0.102
0.101
0.099
0.097
0.096 | .0314
.0310
.0307
.0303
.0303
.0303
.0300 | 0068
0067 | 0.029
0.014
0.000
-0.013
-0.028 | 0068
0049
0032
0016
.0002
.0022
.0043 | .0057
.0044
.0030
.0016
.0003
0009
0021 | .0031
.0031
.0031
.0030
.0030
.0030
.0031 | .0004
.0005
.0005
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.8
04.9
05.0
05.0
05.1
05.2 | -06.0
-01.9
00.1
02.1
06.3
08.3 | 0.160
0.157
0.158
0.158
0.154
0.153 | •0402
•0401
•0397 | 0129
0116
0115
0111
0118
0116 | 0.015
0.001
-0.013
-0.044 | 0049
0027
0017
0005
.0023
.0049 | .0055
.0029
.0017
.0002
0024
0038 | .0031
.0031
.0031
.0031
.0031 | .0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | | | | | · | M = 3.50 |) | • | | | · | | -04.2
-02.2
-00.1
01.9
03.9
08.0 | 00.0
00.0
00.0
00.0
00.0 | -0.082
-0.032
0.017
0.066
0.116
0.212 | .0256
.0219
.0223
.0257
.0332
.0582 | .0033
0004
0037
0072 | 0.001
0.000
0.001
0.001 | 0013
0016
0017 | .0016
.0015
.0016
.0016
.0016 | .0024
.0024
.0024
.0023
.0023 | .0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3
03.4 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.093
0.092
0.092
0.091
0.090
0.088
0.087 | •0292
•0289
•0287
•0285
•0286 | 0069
0050
0053
0053
0053
0051 | 0.030
0.015
0.001
-0.014
-0.028
-0.044 | 0045
0032
0017
.0001
.0016 | .0060
.0044
.0030
.0016
.0003
0009
0019
0029 | .0024
.0024
.0024
.0024
.0024
.0024
.0024 | .0003
.0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE III. - AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | | | | | | MODEL 1 | (TTT. | TT, 00 | 71101Hucu | | |--|--|--|---|---|--|---|---|---|---|---| | | | (ċ | | flow conf
= 1.0, m | | | Aft O | | | | | α, deg | β, deg | C _L | cD | Cm | CY | C _n | C ₂ | c _{Dop} | cDp1 | c _{DbO} | | | | | | | M = 1.60 | | | | | | | -04.2
-02.1
00.0
02.1
04.2
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.182
-0.085
0.006
0.099
0.198
0.393 | .0362
.0268
.0240
.0274
.0379 | .0157
.0030
0092
0215 | -0.001
-0.001
-0.001 | 0005
0006
0005
0002
.0002 | .0010
.0009
.0006
.0004
.0000 | .0046
.0045
.0044
.0044
.0044 | .0000
.0000
.0000
.0000 | .0009
.0009
.0010
.0010
.0010 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -06.0
-04.0
-02.0
00.0
01.9
03.9
06.0
08.0 | 0.144
0.145
0.145
0.149
0.154
0.153
0.154
0.156 | .0311
.0315
.0316
.0318
.0321
.0320
.0320 | 0146
0147
0155
0162
0160 | 0.042
0.019
-0.001
-0.023
-0.047 | 0255
0167
0079
.0001
.0087
.0178
.0259
.0337 | .007.3
.0050
.0026
.0003
0022
0045
0068 | .0050
.0047
.0045
.0044
.0045
.0047
.0051 | .0000
.0000
.0000
.0000
.0000
.0000 | .0010
.0010
.0010
.0010
.0010
.0011 | | 1 | | | | | M = 2.00 | | | | | | | -04.2
-02.1
00.0
02.1
04.2
08.4 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.151
-0.071
0.007
0.087
0.171
0.334 | .0332
.0251
.0226
.0259
.0353 | •0122
•0015
••0086 | -0.003
-0.003
-0.002 | .0012
.0012
.0011
.0013
.0014 | .0011
.0008
.0005
.0004
.0001 | .0038
.0037
.0037
.0037
.0037 | .0000
.0000
.0000
.0000 | .0006
.0006
.0007
.0007
.0007 | | 03.2
03.1
03.2
03.1
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
01.8
03.8
05.9
07.9 | 0.126
0.128
0.128
0.131
0.135
0.133
0.133 | •0299
•0299
•0304
•0305 | | 0.031
0.013
-0.001
-0.018
-0.034
-0.053 | 0144
0086
0033
.0011
.0056
.0098
.0141 | .0055
.0038
.0019
.0004
0013
0031
0049 | .0039
.0039
.0038
.0038
.0038
.0039
.0042 | .0000
.0000
.0000
.0000
.0000
.0000 | .0007
.0007
.0007
.0007
.0007
.0007
.0007 | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 |
-0.126
-0.063
0.002
0.069
0.136
0.268 | .0303
.0235
.0208
.0235
.0311
.0608 | .0139
.0077
.0002
0070
0134
0253 | 0.002
0.002
0.003 | 0024
0026
0029
0030
0030 | .0015
.0012
.0009
.0005
.0001 | •0037
•0036
•0037
•0037
•0037 | .0000
.0000
.0000
.0000
.0000 | .0004
.0004
.0004
.0004
.0004 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.101
0.101
0.103
0.103
0.102
0.103
0.101
0.101 | •0266
•0267 | 0106
0111 | 0.018
0.004
-0.011
-0.027
-0.044 | 0003
.0030
.0065 | .0041
.0028
.0016
.0003
0011
0025
0038 | .0038
.0038
.0038
.0037
.0037
.0037
.0037 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | .0004
.0004
.0004
.0004
.0004
.0004
.0005 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(F_1W_1C_1V_1N_1)$ - Continued | | | | | flow con | | | Aft
O O | 4 | | | |--|---|--|--|--|--|--|--|---|---|---| | α, deg | β, deg | $c_{ m L}$ | $c_{ extsf{D}}$ | C _m | $c_{\mathtt{Y}}$ | Cn | c ₁ | $^{\mathtt{C}_{\mathrm{D}_{\mathrm{b}_{\mathbf{F}}}}}$ | $^{\mathrm{C}\mathrm{D}_{\!b_{\mathrm{I}}}}$ | с ^{ърО} | | | | | | | M = 3.00 | | | | | | | -04.3
-02.2
-00.1
01.9
03.9
08.1 | 00.1
00.1
00.1
00.1
00.1 | -0.105
-0.051
0.005
0.061
0.117
0.231 | .0276
.0215
.0192
.0217
.0285
.0543 | .0087
.0043
0010
0057
0099 | 0.001
0.002
0.003
0.004
0.004 | 0020
0022
0025
0029
0033
0036 | .0013
.0011
.0008
.0004
.0001 | .0029
.0029
.0029
.0029
.0029 | .0000
.0000
.0000
.0000 | .0003
.0002
.0003
.0002
.0003 | | 02.8
02.9
02.9
03.0
03.0
03.1
03.1 | -06.0
-03.9
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.088
0.088
0.089
0.089
0.089
0.089
0.088
0.087 | .0253
.0248
.0245
.0245
.0246
.0249
.0250 | 0080
0078
0076
0078
0079
0083
0085 | 0.049
0.033
0.018
0.004
-0.011
-0.026
-0.043
-0.063 | 0086
0072
0053
0031
0006
.0015
.0035
.0059 | .0040
.0029
.0016
.0003
0010
0022
0033
0043 | .0031
.0032
.0031
.0029
.0029
.0030
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0002
.0003
.0003
.0003
.0003
.0003
.0003 | | ĺ | | | | | M = 3.50 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.0 | 00.0
00.0
00.0
00.0
00.0 | -0.091
-0.043
0.005
0.054
0.102
0.199 | .0249
.0197
.0180
.0202
.0262
.0487 | .0050
.0020
0016
0050
0080
0139 | 0.002
0.002
0.002
0.003
0.003
0.004 | 0019
0020
0021
0022
0022 | .0015
.0012
.0008
.0004
0001 | .0024
.0023
.0022
.0022
.0022 | .0000
.0000
.0000
.0000 | .0002
.0002
.0001
.0002
.0001 | | 02.5
02.6
02.7
02.9
03.0
03.2
03.3 | -06.3
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.077
0.077
0.077
0.077
0.077
0.077
0.076
0.075 | .0234
.0230
.0225
.0225
.0226
.0229
.0231
.0235 | 0069
0065
0063
0064
0065
0067
0069 | -0.042 | 0074
0062
0040
0022
0004
.0010
.0017
.0028 | .0041
.0028
.0014
.0001
0010
0022
0031 | .0023
.0024
.0024
.0023
.0023
.0023
.0023 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | .0001
.0001
.0001
.0001
.0002
.0002
.0002 | - | 1.0000000000000000000000000000000000000 | | | | | | | | | | | | The state of s | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1W_1C_1V_1N_1$) - Continued | | | *************************************** | | | | | (F ₁ W ₁ C ₁) | T. T. | *************************************** | | |--|--|---|--|---|-------------------------------------|---|---|--|---|---| | | | (| | flow consider $a_{\infty} = 1.0$, | | | Aft O | 5 | | | | α, deg | β, deg | $c_{\mathbf{L}}$ | съ | C _m | СY | C _n | С1 | $c_{\mathrm{D_{b_F}}}$ | $c^{D^{p1}}$ | $c_{D_{OO}}$ | | | | | | | M = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.220
-0.115
-0.019
0.083
0.191
0.410 | .0329
.0223
.0183
.0210
.0316
.0787 | .0138
.0137
.0120
.0124
.0146 | | | .0004
.0005
.0004
0001
0005
0022 | .0016
.0015
.0017
.0016
.0017 | .0000
.0000
.0000
.0000 | .0005
.0004
.0003
.0002
.0003 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.137
0.139
0.137
0.132
0.132
0.132 | .0244
.0251
.0253
.0252
.0250 | .0134
.0133
.0131
.0129
.0126 | 0.018
0.001
-0.017
-0.038 | 0146
0071
0009
.0050
.0125 | .0059
.0027
0003
0030
0062
0093 | .0023
.0020
.0019
.0019
.0019 | .0000
.0000
.0000
.0000 | .0004
.0003
.0003
.0003
.0003 | | | | | | | M = 0.85 | | | | | | | -04.4
-02.1
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.247
-0.128
-0.021
0.094
0.211
0.448 | .0354
.0227
.0185
.0219
.0341
.0875 | .0215
.0183
.0140
.0125
.0126 | 0.000 | 0016
0013
0010
0008
0008 | .0005
.0007
.0005
0001
0006
0025 | .0018
.0017
.0019
.0018
.0019 | .0000
.0000
.0000
.0000 | .0005
.0004
.0003
.0002
.0003 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.151
0.153
0.151
0.148
0.145
0.142 | .0256
.0264
.0265
.0264
.0261
.0257 | | 0.018
0.000
-0.018
-0.040 | 0152
0075
0009
.0054
.0132
.0220 | .0066
.0030
0003
0035
0070
0106 | .0023
.0021
.0021
.0021
.0021
.0023 | .0000
.0000
.0000
.0000 | .0004
.0003
.0003
.0003
.0003 | | | | | | 3.00.00 | M = 1.00 | | | | | | | -04.4
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.269
-0.138
-0.012
0.119
0.256
0.533 | .0458
.0319
.0274
.0317
.0463
.1100 | .0318
.0155
.0002
0131 | -0.001
-0.001 | 0013
0010 | 0008
0003
.0003
.0008
.0010
0003 | .0007
.0006
.0007
.0007
.0007 | .0000
.0000
.0000
.0000 | .0008
.0008
.0007
.0006
.0007 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 |
0.192
0.192
0.187
0.182
0.180
0.180 | | 0085
0070 | 0.020
0.000
-0.021
-0.044 | 0166
0082
0012
.0057
.0142
.0236 | .0079
.0045
.0010
0026
0065
0105 | .0013
.0010
.0007
.0007
.0009
.0014 | .0000
.0000
.0000
.0000 | .0009
.0008
.0006
.0005
.0006 | | | | | | | M = 1.25 | | | | | | | -04.3
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.227
-0.111
0.002
0.124
0.248
0.491 | •0451 | .0253
.0084
0081 | 0.001
0.000
-0.003
-0.003 | 0015
0007
0001
0001 | 0002
0004
0007
0010
0006
0010 | .0054
.0053
.0051
.0050
.0052 | .0000
.0000
.0000
.0000 | .0007
.0007
.0008
.0008
.0009 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.185
0.187
0.185
0.184
0.183
0.180 | .0364
.0362
.0365
.0361 | 0152
0157 | 0.019
-0.002
-0.024
-0.048 | 0171
0079
0001
.0078
.0173
.0278 | .0067
.0028
0007
0042
0078
0112 | .0058
.0055
.0055
.0054
.0056
.0059 | .0000
.0000
.0000
.0000 | .0009
.0009
.0009
.0009
.0009 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1w_1c_1v_1n_1$) - Continued | | | | | | figuratio | - | Aft O | <u>\</u> | | | |--|---|--|---|--|---|---|---|---|--|---| | α, deg | β, deg | $c_{\mathbf{L}}$ | c_{D} | Cm | c_{Y} | $c_{\mathbf{n}}$ | Cl | $c_{\mathrm{D_{b_F}}}$ | cDp1 | с _D oO | | | | | | | M = 1.40 | | | | | | | -04.4
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.209
-0.097
0.007
0.116
0.230
0.454 | .0404
.0294
.0261
.0303
.0430 | .0346
.0215
.0064
0080
0222
0461 | -0.003 | 0019
0015
0006
.0005
.0010 | 0000
0004
0008
0010
0011 | .0052
.0051
.0052
.0051
.0049 | .0000
.0000
.0000
.0000 | .0007
.0008
.0007
.0007
.0007 | | 03.4
03.4
03.4
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.170
0.173
0.171
0.167
0.167
0.166 | .0347
.0350
.0352
.0352
.0351 | 0148
0151
0148
0146
0149
0146 | 0.043
0.020
-0.002
-0.024
-0.049
-0.075 | 0176
0081
.0007
.0093
.0190
.0291 | .0048
.0018
0011
0039
0068
0095 | .0053
.0053
.0051
.0051
.0053 | .0000
.0000
.0000
.0000 | .0008
.0008
.0007
.0007
.0008 | | | | | | | M = 1.60 | | | | | | | -04.2
-02.0
00.0
02.1
04.2
08.5 | 00.0
00.0
00.0
00.0
00.0 | -0.181
-0.086
0.006
0.100
0.196
0.392 | .0379
.0287
.0259
.0295
.0397
.0831 | .0163
.0032
0092 | -0.001
-0.002
-0.001 | 0010
0009
0009
0002
.0004
.0016 | .0010
.0009
.0005
.0001
0004 | .0047
.0045
.0044
.0044
.0044 | .0000
.0000
.0000
.0000
.0000 | .0006
.0007
.0007
.0007
.0007 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -06.0
-04.0
-02.0
00.0
01.9
03.9
06.0
08.0 | 0.144
0.148
0.146
0.150
0.156
0.153
0.157
0.156 | .0327
.0335
.0334
.0338
.0341
.0338
.0340 | 0129
0140
0147
0154
0161
0159
0157 | 0.062
0.042
0.019
-0.001
-0.024
-0.047
-0.071
-0.093 | 0253
0168
0081
0000
.0087
.0180
.0265
.0339 | .0069
.0047
.0024
0001
0026
0049
0072
0093 | .0050
.0047
.0045
.0044
.0045
.0049
.0052 | .0000
.0000
.0000
.0000
.0000
.0000 | .0010
.0008
.0008
.0007
.0007
.0007
.0007 | | | | <u> </u> | | | M = 2.00 | l | l | | | | | -04.2
-02.0
00.0
02.1
04.2
08.5 | -00.1
-00.1
-00.1
-00.1
-00.1 | -0.151
-0.070
0.008
0.090
0.173
0.336 | .0355
.0274
.0250
.0284
.0378 | .0223
.0123
.0016
0084
0176
0346 | -0.002
-0.003
-0.001
-0.002 | .0007
.0007
.0010
.0011
.0015 | .0012
.0010
.0006
.0004
.0000 | .0038
.0038
.0038
.0038
.0038 | .0000
.0000
.0000
.0000
.0000 | .0006
.0006
.0006
.0006
.0006 | | 03.1
03.1
03.1
03.1
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
01.8
03.8
05.9 | 0.128
0.129
0.130
0.133
0.136
0.135
0.134 | .0324
.0324
.0323
.0324
.0327
.0331
.0333 | 0128
0128
0128
0134
0139
0135
0135 | 0.051
0.032
0.014
-0.002
-0.018
-0.035
-0.053 | 0152
0091
0035
.0014
.0062
.0103
.0140
.0187 | .0054
.0037
.0019
.0003
0015
0033
0050 | .0040
.0039
.0039
.0039
.0039
.0041
.0043 | .0000
.0000
.0000
.0000
.0000
.0000 | .0008
.0008
.0007
.0006
.0006
.0007
.0007 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 ($F_1w_1c_1v_1N_1$) - Continued | | (e) Mass-flow configuration N _{1E} ; m _I /m _{co} = 1.0, m _O /m _{co} = 0 - Concluded 7. deg 8 deg Cr Cp C Cr Cr Cr Cp | | | | | | | | | | | |--|---|--|---|--|--|---|--|---|--|---|--| | α, deg | β, deg | c _r | $c_{ m D}$ | $c_{\mathbf{m}}$ | СY | C _n | Сl | $^{\mathtt{C}_{\mathrm{D}_{\mathtt{b}_{\mathbf{F}}}}}$ | c ^D p¹ | c ^D pO | | | | | | | | M = 2.50 | | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0 | -0.126
-0.061
0.004
0.071
0.137
0.269 | •0328
•0259
•0234
•0260
•0336
•0637 | .0000
0070
0134 | 0.002
0.003
0.004
0.004
0.005
0.006 | 0034
0038 | .0019
.0015
.0011
.0006
.0001 | .0037
.0037
.0037
.0038
.0038 | .0000
.0000
.0000
.0000
.0000 | .0006
.0006
.0006
.0006
.0006 | | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-01.9
00.0
02.0
03.9
06.0
08.0 | 0.102
0.103
0.102
0.104
0.104
0.103
0.102
0.101 | •0291 | 0103
0103
0107
0113
0116
0120 | -0.026
-0.043
-0.063 | 0103
0082
0060
0039
0016
.0017
.0053
.0086 | .0041
.0028
.0016
.0004
0010
0024
0038
0048 | .0038
.0038
.0038
.0038
.0038
.0038
.0038 | .0000
.0000
.0000
.0000
.0000
.0000 | .0006
.0006
.0006
.0006
.0006
.0006 | | | | | | **** | | M = 3.00 | | | | <u></u> | | | | -04.3
-02.2
-00.1
01.9
04.0
08.1 | 00.1
00.1
00.1
00.1
00.1 | -0.104
-0.049
0.007
0.062
0.118
0.232 | .0300
.0239
.0218
.0244
.0312
.0572 | .0085
.0039
0013
0059
0099
0188 | 0.003 | 0031
0035
0040
0043
0047
0051 | .0018
.0015
.0011
.0006
.0002 | .0030
.0030
.0029
.0029
.0029 | .0000
.0000
.0000
.0000 | .0005
.0005
.0005
.0005
.0005 | | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-03.9
-01.9
00.0
02.1
04.2
06.3
08.3 | 0.089
0.089
0.089
0.090
0.090
0.089
0.089 | .0281
.0276
.0273
.0271
.0273
.0276
.0276 | 0080
0078
0076
0079
0082
0086
0089 | 0.049
0.034
0.019
0.005
-0.010
-0.025
-0.042
-0.063 | 0092
0083
0067
0045
0020
.0004
.0025
.0049 | .0040
.0029
.0017
.0004
0010
0022
0032 | .0032
.0032
.0031
.0030
.0029
.0030
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0004
.0004
.0004
.0005
.0005
.0005 | | | | | | | | M = 3.50 | · | | | | ! | | | -04.2
-02.2
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.089
-0.041
0.006
0.054
0.103
0.200 | .0276
.0223
.0206
.0228
.0288
.0517 | .0046
.0018
0017
0050
0082 | | | .0019
.0015
.0009
.0005
0001 | .0023
.0023
.0022
.0022
.0022 | .0000
.0000
.0000
.0000 | .0004
.0004
.0004
.0004
.0004 | | | 02.5
02.6
02.7
02.9
03.0
03.2
03.3 | -06.3
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.078
0.077
0.078
0.079
0.078
0.078
0.077
0.077 | .0254
.0253
.0254
.0257
.0258 | 0064
0067
0067
0067
0071
0073 | 0.018
0.003
-0.012
-0.027 | .0001 |
.0043
.0029
.0015
.0002
0010
0021
0030 | .0023
.0023
.0023
.0023
.0022
.0022
.0023 | .0000
.0000
.0000
.0000
.0000
.0000 | .0003
.0003
.0003
.0003
.0003
.0003
.0003 | | | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(\mathbf{F_1}\mathbf{W_1}\mathbf{c_1}\mathbf{V_1}\mathbf{N_1})$ - Continued | | | (| | flow con: $m_{\infty} = 0$, 1 | | on N _{lF} ; | Aft | 5 | | | |--|--|---|--|--|--|----------------------|--|---|--|---| | α, deg | β, deg | $c_{ m L}$ | $c_{ extbf{D}}$ | C _m | С¥ | C _n | сı | c _{Dop} | $c_{D_{\mathbf{b_I}}}$ | c _D pO | | | | | | | M = 0.65 | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.219
-0.115
-0.019
0.081
0.190
0.405 | .0377
.0267
.0235
.0256
.0363
.0824 | •0146
•0149 | -0.003
-0.002
-0.001
-0.001
-0.001
0.000 | 0011
0008 | .0008
.0007
.0005
0001
0007
0027 | .0015
.0016
.0013
.0016
.0016 | .0002
.0002
.0002
.0002
.0003 | .0006
.0005
.0004
.0003
.0003 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
06.0 | 0.136
0.136
0.134
0.132
0.130
0.127 | •0293
•0294
•0295
•0298
•0296
•0290 | •0157
•0152 | 0.035
0.016
-0.001
-0.019
-0.039
-0.061 | 0072 | | .0017
.0019
.0018
.0017
.0018 | .0002
.0003
.0003
.0003
.0003 | .0004
.0004
.0003
.0003
.0003 | | | | | | | M = 0.85 | | | | | | | -04.3
-02.1
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.243
-0.127
-0.021
0.093
0.209
0.444 | .0401
.0280
.0235
.0268
.0388
.0919 | •0220
•0170
•0148 | | 0016 | .0008
.0007
.0005
0001
0007
0028 | .0018
.0015
.0017
.0017
.0017 | .0002
.0002
.0002
.0002
.0002 | .0006
.0005
.0004
.0003
.0003 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
04.0
06.0 | 0.151
0.153
0.151
0.149
0.146
0.142 | .0309
.0311
.0314
.0316
.0311 | •0146 | 0.036
0.016
-0.001
-0.019
-0.040
-0.063 | 0010 | .0067
.0031
0004
0037
0072
0108 | .0020
.0021
.0019
.0018
.0022 | .0002
.0002
.0002
.0002
.0003 | .0004
.0004
.0003
.0003
.0003 | | | | | | | M = 0.95 | | | | | | | -02.1
00.0
02.2 | 00.0
00.0
00.0 | -0.136
-0.020
0.109 | •0301
•0245
•0280 | | 0.000
-0.001
-0.002 | | 0000
.0002
0004 | •0017
•0017
•0016 | .0001
.0001
.0001 | •0003
•0002
•0001 | | | | I | | | M = 1.00 | 1 | | | · · · · · · · · · · · · · · · · · · · | | | -04.3
-02.1
00.0
02.2
04.5
06.7 | 00.0
00.0
00.0
00.0
00.0 | -0.274
-0.147
-0.024
0.110
0.249
0.392 | .0528
.0383
.0329
.0367
.0513 | .0416
.0228
.0054
0109 | -0.003
-0.003
-0.002
-0.003
-0.002
-0.001 | | 0022
0013
.0003
.0010
.0013
.0009 | .0006
.0004
.0004
.0002
.0002 | .0006
.0006
.0006
.0006
.0007 | .0011
.0010
.0009
.0008
.0009 | | 03.4
03.4
03.4
03.3
03.3 | -04.0
-02.0
00.0
01.9
04.0
05.9 | 0.182
0.183
0.181
0.175
0.176
0.174 | •0423
•0423
•0426 | 0043
0038
0030
0021
0025
0021 | -0.002
-0.022
-0.045 | .0055
.0142 | .0086
.0050
.0013
0022
0063
0103 | .0008
.0006
.0008
.0006
.0007 | .0006
.0006
.0007
.0007
.0008
.0009 | .0011
.0010
.0007
.0007
.0007 | | | | | | | | | | | | | TABLE III.- AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(\mathbf{F_1}\mathbf{w_1}\mathbf{c_1}\mathbf{v_1}\mathbf{n_1})$ - Continued | | *************************************** | | | | | 1100111 | | l | | | |--|---|--|---|--|--|--|--|---|---|---| | (f) Mass-flow configuration N_{1F} ; $m_{1}/m_{\infty} = 0$, $m_{0}/m_{\infty} = 0$ - Continued | | | | | | | | | | | | α, deg | β, deg | $\mathrm{c_L}$ | c _D | Cm | СY | C _n | c, | $^{\mathtt{C}_{\mathrm{D}_{\mathtt{b}_{\mathbf{F}}}}}$ | c _D pI | с _{Љьо} | | M = 1.25 | | | | | | | | | | | | -04.3
-02.1
00.0
02.3
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.223
-0.110
0.001
0.121
0.243
0.481 | .0482
.0368
.0329
.0377
.0513 | .0429
.0310
.0152
0006
0149
0365 | -0.003
-0.005 | 0020
0015
0008
.0001
0002
0015 | 0011
0021
0021
0019
0010 | .0053
.0051
.0049
.0048
.0052 | .0009
.0009
.0010
.0010
.0011 | .0008
.0008
.0009
.0010
.0011 | | 03.4
03.4
03.4
03.4
03.4 | -04.0
-02.0
00.0
01.9
02.9 | 0.178
0.181
0.181
0.181
0.180 | .0423
.0428
.0425
.0425
.0421 | 0045
0062
0075
0093
0097 | 0.039
0.016
-0.004
-0.026
-0.037 | 0173
0082
0003
.0082
.0129 | .0068
.0026
0014
0052
0069 | .0058
.0056
.0054
.0054
.0057 | .0010
.0010
.0010
.0011
.0012 | .0010
.0010
.0011
.0011 | | M = 1.60 | | | | | | | | | | | | -04.1
-02.0
00.1
02.2
04.3 | 00.0
00.0
00.0
00.0 | -0.164
-0.071
0.018
0.108
0.210 | .0431
.0353
.0336
.0374
.0488 | .0280
.0167
.0050
0067
0193 | -0.001 | 0020
0020
0018
0006 | .0019
.0010
0000
0007
0017 | .0043
.0042
.0042
.0042
.0042 | .0007
.0007
.0007
.0008
.0008 | .0009
.0009
.0009
.0008
.0008 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3 | -05.9
-03.9
-01.9
00.0
02.0
04.0
05.9
07.9 | 0.163
0.161
0.161
0.161
0.160
0.160
0.161
0.163 | .0419
.0423
.0424
.0423
.0422
.0423
.0424 | 0134
0139
0135 | 0.019
-0.001
-0.023
-0.045 | 0255
0164
0077
.0000
.0088
.0177
.0263 | 0036
0061
0085 | .0049
.0046
.0043
.0042
.0044
.0047
.0051 | .0007
.0007
.0007
.0008
.0008
.0009
.0010 | .0011
.0010
.0009
.0008
.0008
.0008 | | M = 2.00 | | | | | | | | | | | | -04.0
-01.8
00.2
02.3
04.4 | 00.0
00.0
00.0
00.0
00.0 | -0.133
-0.056
0.020
0.098
0.180 | .0401
.0344
.0337
.0383 | .0209
.0117
.0020
0068
0156 | 0.000
0.001
0.001
0.000
0.000 | 0001
0005
0003
.0001 | .0021
.0020
.0010
.0003
0005 | .0040
.0038
.0037
.0037 | .0006
.0006
.0006
.0006 | .0007
.0007
.0007
.0007 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -06.0
-03.9
-01.9
00.0
02.0
04.0
06.0
08.0 | 0.140
0.144
0.142
0.142
0.143
0.140
0.142
0.141 | .0424
.0427
.0426
.0430
.0436
.0438
.0444 | 0117
0118
0114
0116
0115
0113
0120 | 0.000
-0.016
-0.034
-0.051 | | | .0038
.0037
.0038
.0038
.0039
.0040
.0042 | .0007
.0007
.0006
.0006
.0007
.0007 | .0008
.0008
.0007
.0007
.0007
.0007
.0007 | | | | | | | | | | | | | TABLE III. - AERODYNAMIC CHARACTERISTICS OF MODEL 1 $(F_1W_1C_1V_1N_1)$ - Concluded | | TABLE 1 | III AERO | DYNAMIC | CHARACTE | RISTICS O | F MODEL . | r (LJMJ _C J, | v _l N _l) - c | oneruded | | |-------------------|------------------|----------------|----------------|----------------------|------------------|----------------|-------------------------|-------------------------------------|--------------------------|------------------| | | | | | flow con | | | Aft | | | | | | | п | 1/m∞ = 0 | , m _O /m∞ | = 0 - Cor | ncluded | 0 0' | <u> </u> | | | | α, deg | β, deg | C _L | c _D | Сm | СY | C _n | c, | C _{DbF} | $c^{D^{p_{\mathbb{I}}}}$ | c ^{DpO} | | M = 2.50 | | | | | | | | | | | | -04.3 | 00.0 | -0.117 | •0391 | •0151 | 0.003 | 0033 | •0029 | •0038 | •0006 | •0007 | | 00.0
01.9 | 00.0
00.0 | 0.014 | •0322
•0359 | .0011
0055 | 0.004
0.005 | 0046
0046 | .0022
.0015 | .0038
.0038 | •0006
•0006 | •0006
•0006 | | 04.0
06.1 | 00.0
00.0 | 0.146 | •0448
•0584 | 0114
0170 | 0.005
0.006 | 0043
0039 | •0007
-•0002 | •0040
•0040 | •0006
•0006 | •0006
•0006 | | 03.0 | -06.0 | 0.114 | •0403 | 0089 | 0.048 | 0114 | •0050 | •0038 | •0006 | •0006 | | 03.0
03.0 | -04.0
-02.0 | 0.114
0.114 | •0402
•0400 | 0091
0087 | 0.018 | 0067 | •0037
•0025 | .0038 | •0006
•0006 | •0006
•0006 | | 03.0
03.0 | 00.0
01.9 | 0.114
0.113 | •0399
•0399 | 0087 | 0.005
-0.008 | 0044
0020 | •0011
-•0004 | .0038
.0038 | •0006
•0006 | •0006
•0006 | | 03.0 | 04.0 | 0.111 | •0400 | 0090 |
-0.024 | •0012 | 0020 | •0038 | •0006 | •0006 | | 03.0 | 06.0
08.0 | 0.108
0.106 | •0401
•0406 | 0089
0089 | -0.042
-0.062 | .0048
.0083 | 0035
0048 | •0038
•0038 | •0006
•0006 | •0007
•0007 | | M = 3.00 | | | | | | | | | | | | -04.2 | 00.1 | -0.093 | •0373 | •0094 | 0.002 | | •0028 | •0030 | •0005 | •0004 | | -00•1
01•9 | 00.1
00.1 | 0.020 | •0317
•0353 | | 0.004
0.004 | 0049
0052 | •0025
•0021 | •0030
•0030 | •0005
•0005 | •0005
•0005 | | 04.0
08.1 | 00.1 | 0.130
0.239 | •0442
•0717 | 0093
0173 | 0.005
0.007 | 0055
0057 | .0016
.0001 | •0030
•0031 | •0005
•0004 | •0004
•0005 | | 02.8 | -06.0 | 0.102 | •0398 | 0074 | 0.048 | 0100
0088 | •0056 | •0031 | •0004 | •0004 | | 02•9
02•9 | -04.0
-01.9 | 0.103 | •0396
•0394 | 0074
0069 | 0.019 | 0074 | •0045
•0032 | •0031
•0031 | •0005
•0005 | •0004
•0004 | | 03.0 | 00 • 1
02 • 1 | 0.103 | •0392
•0395 | 0071
0071 | 0.005
-0.009 | 0054
0028 | •0017
•0002 | •0031
•0031 | •0005
•0004 | •0004
•0005 | | 03•1 | 04.2 | 0.100 | •0396 | 0071 | -0.024 | 0003 | 0011 | •0031 | •0004 | •0005 | | 03•1
03•2 | 06 • 3
08 • 3 | 0.097 | •0398
•0404 | 0068
0071 | -0.040
-0.061 | .0017
.0040 | 0023
0036 | •0031
•0031 | •0004
•0004 | •0005
•0005 | | | | | | | M = 3.50 | | | | · | | | -04•2 | 00.0 | -0.077 | •0345 | •0057 | 0.002 | 0033 | •0028 | •0023 | •0004 | •0003 | | -00 • 1
01 • 9 | 00.0 | 0.021 | •0306
•0339 | 0011
0040 | 0.004
0.005 | 0043
0046 | •0022
•0017 | •0024
•0023 | •0004
•0003 | •0003 | | 04.0
08.1 | 00.0 | 0.115 | •0417
•0675 | 0065
0118 | 0.005
0.008 | 0047
0055 | .0010
0003 | •0023
•0023 | •0003 | •0004
•0004 | | 02•5
02•6 | -06.3
-04.2 | 0.093 | •0385
•0373 | 0052
0055 | 0.051
0.034 | 0105
0090 | •0058
•0043 | •0024
•0024 | •0003
•0003 | •0003
•0003 | | 02.8 | -02.1 | 0.091 | •0374 | 0053 | 0.018 | 0070 | •0027 | •0024 | •0003 | •0003 | | 02•9
03•1 | 00.0 | 0.092 | •0371
•0371 | 0051
0047 | 0.005 | | •0012
-•0001 | •0024
•0024 | •0003 | •0004 | | 03•2 | 04.3 | 0.087 | •0374 | 0047 | -0.024 | 0010 | 0014 | •0024 | •0003
•0003 | •0004 | | 03•3
03•5 | 06 • 4
08 • 5 | 0.086 | •0377
•0388 | 0046
0044 | -0.039
-0.056 | 0002
.0004 | 0023
0034 | •0024
•0024 | •0003 | •0004 | 1 | 4 | L | | | 1 | I | L | L | L | L | <u> </u> | TABLE IV. - AERODYNAMIC CHARACTERISTICS OF MODEL 2 (F1W1C1V1N2) | | | PABLE IV. | - AERODYI | VAMIC CHA | RACTERIS: | CICS OF M | ODEL 2 (F | IMICIAIN3 | 2) | | |--|--|---|--|---|--|--|---|--|---|---| | | | | | | nfigurati
m _O /m _∞ = | | Fwd
O O | | | | | α, deg | β, deg | $c_{\mathbf{L}}$ | $c_{ m D}$ | C _m | СY | C _n | Сı | $^{\mathrm{C}_{\mathrm{D}_{\mathrm{b_F}}}}$ | $c^{D^{p_{ m I}}}$ | с _{ЉрО} | | | | | | | M = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.219
-0.116
-0.015
0.092
0.201
0.423 | •0287
•0179
•0144
•0172
•0284
•0754 | .0018
.0043
.0050
.0071
.0106 | 0.000
0.001
0.001
0.000
0.000
0.000 | 0003
0002
.0001
.0003
.0002 | .0004
.0004
.0004
.0003
.0004 | .0017
.0019
.0019
.0019
.0020 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.143
0.146
0.144
0.141
0.139
0.136 | •0209
•0212
•0213
•0212
•0208
•0204 | .0085
.0088
.0087
.0084 | 0.038 | | •0064
•0034
•0004
-•0024
-•0054 | .0019
.0018
.0018
.0019
.0020 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | <u> </u> | | L | M = 0.85 | L | L | | | | | -04.4
-02.2
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.239
-0.125
-0.015
0.103
0.223
0.467 | .0304
.0184
.0146
.0180
.0303
.0844 | .0067
.0070
.0057
.0056
.0071 | 0.000
0.000
0.001
0.000
0.001 | 0003
0002
.0001
.0004
.0002 | .0004
.0004
.0005
.0004
.0006 | .0019
.0018
.0018
.0018
.0020 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
02.0
03.9
05.9 | 0.161
0.163
0.161
0.157
0.154
0.153 | .0220
.0221
.0224
.0222
.0217
.0214 | .0064
.0063
.0063
.0061
.0057 | 0.001
-0.017
-0.039 | 0129
0058
.0001
.0058
.0129
.0210 | .0072
.0038
.0005
0027
0061
0095 | .0022
.0023
.0022
.0020
.0021
.0025 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 0.95 | | | | | | | -04.5
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.264
-0.130
-0.014
0.121
0.250
0.521 | .0335
.0197
.0155
.0196
.0333 | .0144
.0088
.0051
0020
0030 | 0.001
0.001
0.001
0.000
0.001
0.001 | 0004
0003
.0001
.0004
.0002 | .0007
.0004
.0005
.0005
.0005 | .0019
.0017
.0017
.0018
.0022
.0022 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.00 | | | | | | | -04.5
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.273
-0.139
-0.012
0.122
0.261
0.540 | .0398
.0254
.0206
.0246
.0390
.1028 | .0278
.0156
.0040
0055
0148
0319 | 0.000
0.000
0.001
-0.000
0.001 | 0002
0002
.0001
.0004
.0002 | .0005
.0004
.0004
.0004
.0007 | .0010
.0010
.0012
.0013
.0014 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.3
03.4 | -04.0
-02.0
00.0
02.0
03.9
06.0 | 0.191
0.194
0.193
0.187
0.187
0.186 | •0299
•0301 | 0095
0102
0104
0102
0098
0096 | 0.020
0.000 | •0001 | .0077
.0039
.0005
0028
0065
0103 | .0016
.0016
.0016
.0015
.0017 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE IV.- AERODYNAMIC CHARACTERISTICS OF MODEL 2 ($F_1W_1C_1V_1N_2$) - Continued | | | | | *************************************** | | | (T.T.T. | INS) - C | | | |--|--|---|---|--|---|--|--|---|--|---| | | | | | -flow con $_0, m_0/m_\infty$ | | | Fwd O O | 5 | | | | α, deg | β, deg | C ^F | $c_{ m D}$ | C _m | СY | C _n | Cl | $^{\mathrm{C}_{\mathrm{D}_{\mathrm{b_{F}}}}}$ | $c^{D^{p_1}}$ | c _{DpO} | | | | | | | M = 1.25 | | | | | 1 | | -04.4
-02.2
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0 | -0.246
-0.126
-0.010
0.114
0.240 | .0372
.0238
.0195
.0237
.0375 | .0336
.0220
.0076
0062
0183 | 0.001
0.000
0.001
-0.001
0.000 | 0004
0002
.0001
.0004 | .0004
.0005
.0005
.0002 | •0056
•0054
•0054
•0054
•0054 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 09.0
03.4
03.4
03.4
03.4
03.4 | 00.0
-04.0
-02.0
00.0
01.9
03.9
05.9 | 0.488
0.178
0.181
0.177
0.173
0.173
0.174 | .0948
.0288
.0293
.0289
.0290
.0287
.0288 | 0385
0124
0125
0122
0122
0126
0130 | -0.021
-0.044 | 0148
0068
.0002
.0068
.0148 | .0002
.0073
.0037
.0003
0029
0063
0098 | .0060
.0060
.0059
.0057
.0057
.0058 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | <u>-</u> ! | | M = 1.40 | | <u> </u> | | | | | -04.4
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.222
-0.110
-0.002
0.111
0.226
0.450 | .0345
.0230
.0192
.0233
.0361
.0881 | .0289
.0190
.0063
0055
0162
0349 | -0.002
-0.001
0.000
-0.001
0.000
0.000 | .0005
.0006
.0008
.0010
.0006 | .0000
.0001
.0003
.0001
.0002 | .0054
.0052
.0051
.0051
.0051 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
06.0 | 0.168
0.169
0.167
0.164
0.162
0.162 |
.0279
.0281
.0280
.0280
.0276 | | 0.021
-0.001
-0.022
-0.046
-0.071 | l | .0070
.0036
.0003
0029
0062
0096 | .0054
.0054
.0053
.0053
.0053
.0055 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.60 | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.191
-0.096
-0.003
0.095
0.197
0.398 | .0314
.0214
.0178
.0217
.0323 | .0253
.0152
.0041
0062
0170
0340 | 0.000
0.000
0.000
0.000
0.000
0.001 | 0002
0001
0001
.0001
.0000 | 0001
0001
0001
.0000
0003 | .0045
.0044
.0044
.0044
.0044 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.140
0.143
0.142
0.146
0.154
0.156
0.156 | .0254
.0257
.0257
.0260
.0264
.0266
.0262 | 0110
0111
0116
0125
0127 | 0.043
0.021
0.000
-0.021 | 0222
0150
0073
0001
.0067
.0141
.0211 | .0079
.0057
.0026
0001
0028
0056
0080 | .0050
.0049
.0046
.0044
.0046
.0050 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 2.00 |) | | ., | | | | -04.2
-02.1
00.0
02.1
04.2
08.5 | 00.0
-00.1
-00.1
-00.1
-00.1 | -0.161
-0.080
0.001
0.086
0.172
0.341 | .0288
.0201
.0168
.0204
.0299
.0679 | .0200
.0124
.0032
0058
0136 | | .0002
.0001
.0000
.0000
.0001 | .0001
.0001
.0001
.0000
.0000 | .0036
.0036
.0036
.0036
.0035 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.2
03.1
03.1
03.1
03.2
03.2
03.2 | -06.1
-04.1
-02.1
-00.1
01.8
03.9
05.9
07.9 | 0.124
0.125
0.125
0.129
0.132
0.132
0.132 | .0247
.0245
.0242
.0244
.0247
.0248
.0247 | 0091
0093
0095
0101
0102
0097
0096
0100 | 0.054
0.033
0.015
-0.002
-0.020
-0.039
-0.058
-0.080 | 0141
0095
0049
0002
.0045
.0091
.0135
.0181 | .0058
.0040
.0020
.0001
0018
0055
0071 | .0040
.0039
.0036
.0035
.0035
.0037
.0040 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | | L | | L | J | ! | <u> </u> | <u></u> | 1 | L | L | TABLE IV. - AERODYNAMIC CHARACTERISTICS OF MODEL 2 (F1W1C1V1N2) - Continued | | TADLE | IV AERO | DINAMIC | CHARACTE | 7121102 0 | T MODEL 2 | (F1W1C1 | v1 _N 2) - 0 | Johernaed | | |--|---|--|---|--|--|---|--|--|---|--| | | | | | | nfigurati
= 1.0 - | | Fwd | | | | | α, deg | β, deg | CL | C _D | Cm | CY | Cn | Cl | c _{DoF} | c _D pI | c _{DpO} | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.136
-0.070
-0.003
0.067
0.136
0.273 | .0265
.0189
.0158
.0183
.0257
.0562 | .0025
0035
0088 | -0.001
-0.001
0.000
0.000
0.000 | .0001
.0001
.0001
.0000
.0000 | .0002
.0001
.0001
.0002
.0002 | .0036
.0035
.0035
.0035
.0036 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0 | 0.101
0.101
0.100
0.102
0.102
0.103
0.102
0.101 | .0216
.0216
.0215
.0212
.0216
.0218
.0219 | | 0.016
0.000
-0.017
-0.033 | 0074
0050
0024
.0000
.0026
.0052
.0074 | .0044
.0030
.0015
.0002
0013
0026
0039 | .0036
.0037
.0036
.0036
.0035
.0036
.0037 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | 4 | | | -04.3
-02.2
-00.1
01.9
04.0
08.1 | 00.1
00.1
00.1
00.1
00.1
00.1 | -0.114
-0.058
0.001
0.059
0.117
0.235 | .0236
.0168
.0140
.0165
.0233
.0495 | .0064
.0022
0016
0048 | -0.001
0.000
0.000
0.000 | 0000
0000
0001
0001
0001 | .0001
.0001
.0001
.0001
.0001 | .0029
.0029
.0029
.0029
.0028
.0030 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.088
0.088
0.087
0.088
0.088
0.088
0.089 | .0197
.0196
.0193
.0194
.0196
.0200
.0203 | 0039
0048 | 0.015
0.000
-0.015
-0.031 | 0037
0029
0015
0001
.0013
.0029
.0038
.0049 | 0025
0037 | .0030
.0030
.0029
.0029
.0028
.0029
.0030 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.9
05.0
05.0
05.1
05.2
05.2 | -06.0
-01.9
00.1
02.1
06.3
08.4 | 0.148
0.145
0.147
0.147
0.148
0.149 | .0281
.0278
.0282
.0285
.0291
.0297 | 0088 | 0.016
0.000
-0.015
-0.049 | 0018
0008
0001
.0007
.0018
.0029 | 0038 | .0032
.0031
.0030
.0030
.0031
.0032 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | , , , , , , , , , , , , , , , , , , , | 7.1 | | 1 | | M = 3.50 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.0 | 00.0
00.0
00.0
00.0
00.0 | -0.097
-0.048
0.001
0.051
0.101
0.203 | .0209
.0149
.0127
.0147
.0207
.0434 | .0041
.0013
0010 | -0.002
-0.002
-0.002
-0.001
-0.001 | .0003
.0003
.0002
.0002
.0001 | .0001
.0001
.0001
.0001
.0001 | .0025
.0024
.0024
.0023
.0023 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.5
02.6
02.7
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.5 | 0.078
0.076
0.075
0.077
0.077
0.077
0.078
0.079 | .0170
.0171
.0175
.0179 | 0027
0019
0019
0021
0026
0036 | -0.032 | 0023
0024
0016
.0002
.0019
.0027
.0025
.0024 | .0035
.0024
.0013
.0001
0011
0022
0032 | .0024
.0024
.0024
.0023
.0023
.0023
.0023
.0024 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE IV.- AERODYNAMIC CHARACTERISTICS OF MODEL 2 $(F_1W_1c_1V_1N_2)$ - Continued ' | α , deg | β, deg | $c_{ m L}$ | $c_{ extsf{D}}$ | Cm | CY | Cn | Cl | $c_{D_{\mathbf{b_F}}}$ | c _{DbI} | $c_{D_{b_0}}$ | |--|--|--|---|--|--|---|---|---|---|---| | | | | | | M = 1.60 | | | - | | | | -04.2
-02.1
00.0
02.1
04.3
08.5 | 00.0
00.0
00.0
00.0
00.0 | -0.194
-0.099
-0.005
0.089
0.189
0.388 | .0363
.0263
.0227
.0260
.0362 | .0261
.0161
.0049
0058
0165 | 0.001
0.001
0.001
0.001
0.002
0.002 | 0010
0008
0004
0003 | .0004
.0004
.0006
.0005
.0005 | .0045
.0044
.0043
.0043
.0044 | .0011
.0010
.0008
.0006
.0004 | .000
.000
.000 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3 | -06.1
-04.0
-02.1
-00.1
01.9
03.8
05.8 | 0.143
0.143
0.142
0.141
0.146
0.145
0.146 | .0305
.0306
.0308
.0306
.0309
.0307
.0305 | 0115
0109
0105
0101
0111
0119
0122
0129 | 0.067
0.044
0.022
0.002
-0.019
-0.041
-0.063 | 0226
0153
0078 | .0075
.0053
.0025
0003
0034
0062
0087 | .0048
.0048
.0045
.0043
.0045
.0047
.0050 | .0006
.0005
.0005
.0004
.0004
.0005
.0006 | .000
.000
.000
.000
.000 | | | | V | | | M = 2.00 | N | 10 | | 11.00 | | | -04.2
-02.0
00.0
02.1
04.2
08.5 | 00.0
-00.1
-00.1
-00.1
-00.1 | -0.160
-0.081
-0.001
0.082
0.166
0.331 | .0336
.0250
.0218
.0251
.0342 | .0215
.0132
.0038
0049
0129
0268 | -0.002
-0.002
-0.002
-0.001
-0.001
0.000 | .0005
.0007
.0009
.0012
.0013 | 0002
0003
0004
0006
0008
0009 | .0037
.0036
.0035
.0035
.0035 | .0006
.0006
.0006
.0006
.0005 | .000
.000
.000
.000 | |
03.4
03.4
03.4
03.4
03.4
03.4
03.4 | -06.1
-04.1
-02.0
00.0
01.8
03.9
05.9 | 0.125
0.128
0.127
0.126
0.131
0.127
0.129
0.129 | .0298
.0301
.0296
.0299 | 0061
0065
0068
0071
0076
0079
0079 | 0.060
0.040
0.020
0.002
-0.016
-0.036
-0.056 | 0107
0058 | 0064 | .0039
.0038
.0036
.0035
.0036
.0037
.0039 | .0006
.0005
.0005
.0005
.0005
.0005 | .000
.000
.000
.000
.000 | | 03.5 | 07.9 | 08129 | *0300 | | M = 2.50 | | | *0041 | *0009 | *000 | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.134
-0.069
-0.004
0.064
0.132
0.267 | .0312
.0236
.0206
.0230
.0304
.0598 | .0153
.0098
.0032
0028
0081 | 0.000
0.000
0.000
0.001
0.002
0.002 | 0010
0007
0005
0003
.0000 | .0000
0003
0004
0006
0008 | .0035
.0035
.0035
.0035
.0035 | .0005
.0005
.0005
.0004
.0004 | .0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
01.9
04.0
06.0 | 0.098
0.098
0.097
0.099
0.098
0.098
0.097 | .0261
.0261 | 0057
0055
0059
0061
0066 | -0.032 | 0057
0028
0002
.0027
.0056
.0079 | .0034
.0020
.0006
0007
0020
0034
0047 | .0035
.0035
.0035
.0035
.0035
.0036
.0037 | .0004
.0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | TABLE IV. - AERODYNAMIC CHARACTERISTICS OF MODEL 2 (F1W1C1V1Nc) - Continued | | TABLE | IV AERO | ODYNAMIC | CHARACTE | RISTICS (| OF MODEL | 2 (F _l W _l C _j | V _I N ₂) ~ | Continued | l | |------------------|------------------|----------------|---------------------------|---------------------------|------------------|----------------------------------|---|-----------------------------------|----------------|------------------| | | | | (b) Mass | -flow com | nfigurati | on Nor; | Fwd | | | | | | | m ₃ | $[/m_{\infty} \approx 0.$ | 3, $m_{\rm O}/m_{\infty}$ | = 1.0 - | on N _{2B} ;
Conclude | d 0 0 | \bigcirc | | | | | | | | ~ | | _ | | C Ta | C IV | CD | | α, deg | β, deg | c _L | c _D | Cm | CY | Cn | Cl | $c_{\mathrm{D_{b_F}}}$ | $c^{D^{p_1}}$ | c ^{DPO} | | | | | | | M = 3.00 | | | | | | | -04.3 | 00.1 | -0.112 | •0284 | .0108 | 0.001 | 0007 | •0002 | •0030 | •0003 | •0000 | | -02.2
-00.1 | 00.1
00.1 | 0.000 | •0217
•0191 | .0069
.0026 | 0.001 | 0005
0002 | •0000
-•0002 | .0030
.0029 | •0003 | •0000 | | 01.9 | 00.1 | 0.057 | •0213 | 0012 | 0.001 | 0000 | 0005 | •0029 | •0003 | •0000 | | 03.9
08.1 | 00.1
00.1 | 0.114
0.229 | •0279
•0531 | 0045
0120 | 0.001 | •0002
•0004 | 0008
0010 | •0029
•0030 | •0003
•0002 | •0000 | | 02.8 | -06.0 | 0.086 | •0249 | 0035 | 0.048 | 0044 | •0030 | •0030 | •0003 | •0000 | | 02•8
02•9 | -04.0
-01.9 | 0.086 | •0246
•0242 | 0033
0027 | 0.031
0.015 | 0031
0014 | •0018
•0006 | .0030
.0030 | .0003
.0002 | •0000 | | 02.9 | 00.1 | 0.086 | •0241 | 0028 | 0.001 | .0001 | 0007 | •0030 | •0002 | •0000 | | 03.0
03.0 | 02.1
04.2 | 0.086 | •0241
•0244 | 0031
0038 | -0.014
-0.029 | .0017
.0032 | 0020
0032 | .0030
.0030 | •0002
•0003 | •0000 | | 03.0 | 06.2 | 0.086 | •0246 | 0048 | -0.045 | .0043 | 0044 | •0031 | •0003 | •0000 | | 03•1 | 08.3 | 0.086 | •0249 | ~•0055 | | •0053 | 0054 | •0031 | •0003 | •0000 | | 04.8
04.9 | -06.0
-04.0 | 0.143
0.141 | •0329
•0325 | 0072
0071 | 0.050
0.031 | 0029
0017 | •0028
•0016 | .0031
.0030 | •0002
•0002 | •0000 | | 04.9 | -01.9 | 0.141 | •0324 | 0063 | 0.016 | 0006 | •0004 | •0030 | •0002 | •0000 | | 05.0
05.0 | 00.1
02.1 | 0.142
0.142 | •0325
•0327 | 0062
0064 | -0.001 | .0002
.0012 | 0009
0022 | .0030
.0030 | •0002
•0002 | •0000 | | 05•1
05•1 | 04•2
06•2 | 0.143
0.144 | •0328
•0331 | 0075
0088 | -0.030
-0.045 | .0020
.0023 | 0035
0047 | .0030 | •0002
•0002 | •0000 | | 05.2 | 08.4 | 0.143 | •0332 | | | .0031 | 0060 | .0032 | .0003 | •0000 | | | <u> </u> | | | | M = 3.50 | | · · · · · · · · · · · · · · · · · · · | | | | | -04.2 | 00.0 | -0.094 | •0258 | .0068 | 0.000 | 0005 | •0005 | •0024 | •0002 | •0000 | | -02.2
-00.1 | 00.0 | 0.002 | •0199
•0177 | .0044
.0017 | -0.002
0.000 | | -0002
-0001 | •0024
•0024 | •0002
•0002 | •0000 | | 01.8 | 00.0 | 0.050 | •0196 | 0005 | 0.000 | •0000 | 0004 | •0023 | •0001 | •0000 | | 03.9
08.0 | 00.0 | 0.097 | •0250
•0471 | 0026
0066 | 0.000 | •0003
•0005 | 0007
0011 | •0023
•0024 | •0001
•0001 | •0000 | | 02.5 | -06.4 | 0.075 | •0228 | 0017 | 0.048 | 0030 | •0028 | •0025 | •0001 | •0000 | | 02•6
02•7 | -04.2
-02.1 | 0.075 | •0224
•0221 | 0020
0016 | | 0024
0014 | .0018
.0007 | .0025
.0025 | •0001
•0001 | •0000 | | 02•9 | 00.0 | 0.075 | •0220 | 0015 | 0.002 | •0002 | 0006 | •0024 | •0001 | •0000 | | 03.0 | 02 • 1
04 • 2 | 0.074 | •0220
•0223 | 0018
0026 | | •0018 | 0018 | •0024
•0024 | •0001
•0001 | •0000 | | 03.3 | 06.4 | 0.074 | •0225 | 0035
0036 | -0.043
-0.062 | | 0040
0052 | •0024
•0025 | •0001 | •0000 | | 03 • 4 | 08.6 | 0.075 | •0229
•0295 | 0041 | | | •0027 | •0023 | •0002 | •0000 | | 04.7 | -04.2 | 0.122 | •0292 | 0043 | 0.031 | 0009 | •0016 | •0024 | •0001 | •0000 | | 04 • 8
04 • 9 | -02.1
00.0 | 0.122
0.123 | •0290
•0292 | 0037
0032 | 0.016
0.001 | 0006
.0004 | -0004
-0009 | •0024
•0024 | •0001
•0001 | •0000
•0000 | | 05.1 | 02.1 | 0.122 | •0291 | 0038 | -0.014 | .0015 | 0022 | •0024 | •0001 | •0000 | | 05 • 2
05 • 3 | 04.3
06.4 | 0.123 | | 0052
0060 | | | 0034
0045 | •0024
•0024 | •0001
•0001 | •0000 | | 05.5 | 08•6 | 0.123 | •0301 | -•0059 | -0.062 | •0002 | -•0057 | •0025 | •0002 | •0000 | Ì | | | | | | | | | | | | : | } | TABLE IV.- AERODYNAMIC CHARACTERISTICS OF MODEL 2 ($F_1 \mathbb{W}_1 C_1 \mathbb{V}_1 \mathbb{N}_2)$ - Continued | | | (| | flow con $n_{\infty} = 0$, m | | | Fwd | 5 | | | |--|--|---|--|---|---|---|---|---|---|---| | α, deg | β, deg | $c_{ m L}$ | c_{D} | Cm | CY | Cn | Cı | c _{Db} F | cDp1 | c _{DbO} | | | | | | | M = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.219
-0.116
-0.017
0.085
0.194
0.419 | .0325
.0215
.0183
.0212
.0320
.0790 | .0009
.0025
.0027
.0050
.0089 | 0.000 | 0012
0008
0004
0001
0003
0001 | .0002
.0003
.0003
0001
0002 | .0019
.0018
.0017
.0017
.0018 | .0012
.0011
.0008
.0005
.0003 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.139
0.141
0.140
0.137
0.134
0.132 | .0246
.0250
.0256
.0253
.0248 | .0063 | 0.038
0.018
0.000
-0.017
-0.037
-0.060 | 0127
0060
0004
.0050
.0118
.0198 | .0059
.0028
0002
0030
0059
0088 | .0019
.0019
.0016
.0017
.0019 | .0005
.0004
.0003
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 0.85 | | | | | | | -04.4
-02.2
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.242
-0.125
-0.016
0.098
0.217
0.462 | .0349
.0225
.0186
.0216
.0343
.0882 | .0048
.0041
.0023
.0028
.0053 | -0.001
0.000
0.000
0.000
0.001
0.002 | 0008
0003 | .0003
.0004
.0004
0000
0002 | .0020
.0017
.0018
.0021
.0019 | .0013
.0012
.0009
.0006
.0004 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.156
0.157
0.155
0.153
0.150
0.148 | .0257
.0263
.0263
.0266
.0260
.0258 | | 0.039
0.019
0.001
-0.018
-0.039
-0.061 | 0133
0064
0005
.0053
.0125
.0209 | .0065
.0032
0001
0033
0065
0098 | .0022
.0019
.0021
.0018
.0021 | .0006
.0005
.0005
.0004
.0005 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 0.95 | | | | | | | -04.5
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.265
-0.131
-0.015
0.112
0.241
0.514 | .0376
.0232
.0188
.0227
.0369
.0991 | .0117
.0044
.0008
0020
0032
0046 | -0.001
0.000
0.000
0.000
0.001
0.002 | 0012
0011
0003
0002
0006
0005 | .0006
.0002
.0006
0001
0004 | .0020
.0017
.0019
.0019
.0019 | .0020
.0016
.0011
.0008
.0006 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.00 | 1 | | | | | | -04.5
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.281
-0.143
-0.016
0.118
0.256
0.538 | 02650417 |
.0249
.0099
0009
0088
0157
0316 | 0.001 | 0011
0012
0002
0002
0006
0005 | 0001
0003
.0008
.0003
.0001 | .0014
.0012
.0014
.0017
.0017 | .0019
.0018
.0014
.0010
.0007 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.186
0.189
0.186
0.184
0.184 | | 0126
0126
0123
0131
0128
0118 | 0.020
0.000 | 0146
0071
0005
.0058
.0138
.0227 | .0072
.0037
.0002
0030
0067
0104 | .0019
.0019
.0018
.0015
.0019 | .0008
.0007
.0007
.0006
.0007 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE IV.- AERODYNAMIC CHARACTERISTICS OF MODEL 2 ($F_1W_1C_1V_1N_2$) - Continued | | | | (a) Mass | -flow cor | nfigurati | on N: | Fwd | 1 | | | |--|--|--|---|--|--|--|---|---|---|--| | | | | | | : 1.0 - C | | |)
 | | | | α, deg | β, deg | $c_{ m L}$ | $c_{ exttt{D}}$ | Cm | $c_{\mathbf{Y}}$ | Cn | Cl | $^{\mathtt{C}_{\mathrm{D}_{\!b_{\mathbf{F}}}}}$ | cD ^{p1} | СЪрО | | | | | | | M = 1.25 | | | | | | | -04.4
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.256
-0.137
-0.019
0.104
0.232
0.481 | .0433
.0293
.0246
.0282
.0419 | .0084
0065
0192 | 0.000
0.000
0.001
-0.001
-0.001
0.000 | 0013
0007 | .0003
.0002
0003
0010
0006
0001 | •0056
•0054
•0053
•0054
•0054 | .0016
.0015
.0012
.0009
.0007 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.168
0.170
0.168
0.165
0.165
0.164 | .0331
.0336
.0336
.0337
.0338 | 0128
0127
0127
0130
0134
0134 | 0.043
0.020
-0.001
-0.021
-0.044
-0.068 | 0152
0070
0002
.0065
.0144
.0232 | .0062
.0025
0008
0039
0071
0102 | .0059
.0058
.0056
.0056
.0057 | .0007
.0007
.0006
.0006
.0007 | .0000
.0000
.0000
.0000 | | | | - | | | M = 1.40 | | | | | | | -04.4
-02.1
00.0
02.2
04.5
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.228
-0.120
-0.011
0.099
0.214
0.437 | .0413
.0292
.0251
.0284
.0405 | .0316
.0214
.0077
0045
0154
0353 | -0.001
-0.001
0.000
-0.001
0.000
0.000 | 0004
0004
0002
.0000
.0000 | | .0051
.0051
.0051
.0051
.0051 | .0013
.0012
.0008
.0006
.0004 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.157
0.160
0.155
0.152
0.151
0.149 | .0325
.0330
.0331
.0331
.0330 | 0122
0111
0097
0090
0093
0095 | 0.043
0.021
0.000
-0.021
-0.045
-0.069 | 0155
0074
0002
.0069
.0151
.0237 | .0059
.0027
0005
0034
0066
0097 | •0055
•0055
•0053
•0052
•0054
•0055 | .0004
.0004
.0004
.0004
.0005 | .0000
.0000
.0000
.0000 | | | • | | | | M = 1.60 | | | | | | | -04.1
-02.0
00.1
02.2
04.4
08.7 | 00.0
00.0
00.0
00.0
00.0
-00.1 | -0.186
-0.094
-0.005
0.091
0.196
0.397 | .0373
.0277
.0244
.0281
.0388
.0837 | .0262
.0164
.0056
0053
0164
0344 | 0.002
0.003
0.003
0.003
0.003 | 0023
0022
0019
0014
0011 | 0004
0005 | .0045
.0044
.0043
.0043
.0044 | .0010
.0007
.0005
.0003
.0001 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3
03.4 | -06.1
-04.1
-02.1
-00.1
01.8
03.9
05.9
07.8 | 0.137
0.138
0.139
0.143
0.146
0.145
0.149
0.151 | .0317
.0319
.0322
.0324
.0327
.0325
.0324 | 0117011201090110012001240132 | 0.068
0.046
0.023
0.004
-0.017
-0.039
-0.061
-0.086 | 0231
0160
0082
0014
.0054
.0126
.0198 | .0072
.0049
.0023
0005
0034
0063
0092 | .0049
.0048
.0045
.0044
.0044
.0046
.0050 | .0004
.0003
.0002
.0002
.0002
.0002
.0003 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | · | | | M = 2.00 | · | ŗ | | | | | -04.0
-01.9
00.2
02.3
04.4
08.7 | 00.0
00.0
-00.1
-00.1
-00.1 | -0.158
-0.082
-0.003
0.079
0.162
0.325 | .0358
.0268
.0239
.0275
.0367
.0739 | .0220
.0140
.0047
0039
0116
0263 | 0.003 | 0025
0022
0020
0018
0015
0011 | 0005
0007
0011
0015
0015 | .0028
.0034
.0034
.0034
.0034 | .0007
.0006
.0004
.0002
.0002 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -06.1
-04.1
-02.1
00.0
01.8
03.9
05.9
07.9 | 0.120
0.125
0.124
0.126
0.130
0.131
0.130 | .0318
.0319
.0316
.0316
.0319
.0320
.0318 | 0067
0073
0076
0084
0091
0094
0099 | 0.061
0.041
0.021
0.004
-0.014
-0.034
-0.055
-0.076 | 0160
0113
0062
0016
.0033
.0081
.0130
.0175 | .0044
.0024
.0004
0015
0033
0051
0068 | .0038
.0038
.0036
.0035
.0035
.0036
.0038 | .0005
.0003
.0002
.0002
.0002
.0003
.0004 | .0000
.0000
.0000
.0000
.0000
.0000 | TABLE IV.- AERODYNAMIC CHARACTERISTICS OF MODEL 2 $(F_1W_1C_1V_1N_2)$ - Concluded | | | | | | | | - (F1W1C1 | . T 5. | | | |--|---|--|---|--|--|--|---|---|---|---| | | | m | (c) Mass
I ^{/m} ∞ = 0 | -flow cor
, m _O /m _∞ = | nfigurati
= 1.0 - C | on N _{2C} ;
oncluded | Fwd (| <u> </u> | | | | α, deg | β, deg | $\mathtt{c}_{\mathtt{L}}$ | $c_{ m D}$ | $C_{\mathbf{m}}$ | СY | $\mathtt{c}_{\mathtt{n}}$ | c, | $^{\mathtt{C}_{\mathrm{D}_{\!b_{\mathrm{F}}}}}$ | $c^{D^{p_1}}$ | СЪрО | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.134
-0.070
-0.004
0.063
0.130
0.264 | .0335
.0260
.0229
.0252
.0325
.0618 | .0157
.0105
.0039
0021
0074
0166 | 0.001
0.001
0.001
0.002
0.002
0.004 | 0016
0013
0010
0007
0005
0001 | 0001
0005
0008
0011
0013
0017 | .0035
.0035
.0035
.0035
.0035 | .0006
.0006
.0006
.0005
.0005 | .0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.096
0.096
0.095
0.096
0.097
0.096
0.096 | .0292
.0287
.0284
.0283
.0282
.0282
.0282 | 0051
0053
0049
0048
0051
0052
0055 | 0.018
0.002
-0.015
-0.031
-0.048 | | .0030
.0015
.0001
0012
0025
0039
0051
0061 | .0035
.0035
.0035
.0035
.0035
.0036
.0037 | .0004
.0005
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.1 | 00.1
00.1
00.1
00.1
00.1
00.1 | -0.111
-0.056
-0.000
0.056
0.112
0.227 | .0308
.0242
.0217
.0238
.0301
.0548 | .0112
.0075
.0033
0003
0037
0111 | 0.000
0.000
0.000
0.001
0.002
0.003 | 0010
0007
0005
0003
0002
.0003 | .0001
0002
0005
0009
0012 | .0029
.0030
.0029
.0029
.0029 | .0005
.0005
.0005
.0005
.0005 | .0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.0 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.084
0.084
0.084
0.083
0.084
0.083
0.084 | .0274
.0271
.0268
.0264
.0265
.0268
.0269 | | 0.001
-0.013
-0.028
-0.048 | 0047
0034
0017
0002
.0016
.0033
.0042
.0054 | .0026
.0014
.0001
0011
0023
0036
0047
0058 | .0029
.0029
.0029
.0029
.0029
.0029
.0030 | .0005
.0004
.0004
.0005
.0005
.0004
.0004 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.50 | - | - | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.0 | 00.0
00.0
00.0
00.0
00.0 | -0.094
-0.047
0.001
0.049
0.096
0.193 | .0283
.0227
.0205
.0223
.0277
.0494 | .0072
.0047
.0024
.0002
0016 | 0.000 | 0008
0005
0003
0002
.0000 | .0004
.0000
0004
0008
0011 | .0025
.0025
.0024
.0024
.0024 |
.0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000 | | 02.5
02.6
02.7
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.073
0.073
0.071
0.072
0.073
0.073
0.074
0.074 | | 0015
0012
0008
0009
0014
0022
0029
0031 | -0.042 | •0023 | .0024
.0014
.0002
0009
0022
0034
0044 | .0024
.0024
.0024
.0024
.0024
.0024
.0024 | .0003
.0003
.0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE V. - AERODYNAMIC CHARACTERISTICS OF MODEL 3 (F1W1C1V1N3) | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0
00.0
00.0 | -0.223
-0.118
-0.018
0.088
0.198
0.429 | .0298
.0189
.0154
.0178 | .0020
.0039
.0047 | C _Y M = 0.65 0.000 0.000 | C _n | ·0003 | C _{DbF} | c _D pI | c _{Dp0} | |---|--|---|--|---|---|---|---|---|--|---| | -02.1
00.0
02.1
04.3
08.7
03.2
 | 00.0
00.0
00.0
00.0
00.0
-04.0 | -0.118
-0.018
0.088
0.198 | .0189
.0154
.0178 | .0039 | 0.000 | 0004 | 0003 | 2577 | | | | -02.1
00.0
02.1
04.3
08.7
03.2
 | 00.0
00.0
00.0
00.0
00.0
-04.0 | -0.118
-0.018
0.088
0.198 | .0189
.0154
.0178 | .0039 | | 0004 | 0003 | 0.555 | | | | 03.2
03.2
03.2
03.2
03.2 | -02.1 | | .0286
.0773 | .0073
.0114
.0241 | 0.000
-0.001
-0.001
0.000 | 0003
0000
.0002
.0001 | .0003
.0003
.0002
.0003
.0001 | .0020
.0018
.0017
.0019
.0019 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000 | | | 00.0
01.9
03.9
05.9
07.9 | 0.144
0.146
0.147
0.145
0.143
0.142
0.142 | .0217
.0221
.0222
.0223
.0220
.0215 | .0075 | -0.070 | 0108
0047
.0002
.0047
.0108
.0179
.0248 | .0067
.0034
.0002
0028
0060
0091
0117 | .0022
.0021
.0020
.0020
.0021
.0024
.0027 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | M = 0.85 | | | | | | | -04.4
-02.2
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.248
-0.128
-0.017
0.100
0.224
0.472 | .0324
.0194
.0155
.0187
.0311 | .0066
.0063
.0052
.0058
.0082 | 0.001
0.000
0.000
0.000 | 0003
0003
.0000
.0003
.0001 | .0004
.0003
.0004
.0003
.0004 | .0017
.0018
.0018
.0019
.0021 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000 | | | -04.1
-02.0
00.0
01.9
03.9
05.9 | 0.161
0.163
0.160
0.156
0.154
0.153
0.154 | .0229
.0233
.0234
.0232
.0228
.0225 | .0066
.0059
.0054 | 0.022 | 0114
0051
0000
.0048
.0111
.0186
.0259 | .0075
.0040
.0004
0030
0065
0101
0129 | .0022
.0023
.0020
.0021
.0022
.0023 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | - | | | | M = 0.95 | | | | | | | -04.4
-02.2
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.271
-0.138
-0.017
0.117
0.252
0.528 | .0353
.0210
.0162
.0204
.0346
.0981 | .0130
.0071
.0038
0016
0030
0043 | 0.001
0.001
0.001
0.000
0.001 | 0007
0004
.0000
.0003
.0000 | .0007
.0003
.0004
.0003
.0004
.0006 | .0018
.0017
.0019
.0019
.0020 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000 | | | | | | | M = 1.00 | | | | | | | -04.4
-02.2
00.0
02.2
04.5
09.1 | 00.0
00.0
00.0
00.0
00.0 | -0.285
-0.148
-0.018
0.119
0.261
0.548 | .0418
.0269
.0217
.0255
.0403 | .0280
.0151
.0034
0060
0142
0301 | | 0004
0003
.0000
.0003
.0001 | .0003
.0003
.0004
.0003
.0005 | .0013
.0011
.0011
.0012
.0013 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000 | | | -04.1
-02.1
00.0
01.9
03.9
05.9
07.9 | 0.191
0.193
0.189
0.187
0.189
0.191
0.193 | .0305
.0308
.0309
.0308
.0308
.0306 | 0102
0102
0102
0111 | -0.023
-0.050 | 0127
0056
.0000
.0053
.0123
.0203
.0281 | .0081
.0042
.0004
0031
0071
0115 | .0018
.0017
.0014
.0015
.0016
.0019 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($F_1W_1C_1V_1N_3$) - Continued | | | mI | (a) Mass | s-flow co | nfigurat: | ion N _{3A} ;
Continue | d Fwd | 6 | | | |--|---|--|---|---|--|--|--|---|--|--| | α, deg | β, deg | C _L | c _D | Cm | СY | Cn | Cı | c _{DbF} | c _{DpI} | СЪрО | | | | | | | M = 1.25 | | | | | | | -04.4
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.252
-0.133
-0.014
0.109
0.236
0.485 | .0393
.0257
.0209
.0251
.0389 | .0380
.0256
.0120
0004
0121
0327 | | 0005
0004
.0000
.0003
.0000 | .0004
.0004
.0004
.0002
.0003 | .0057
.0055
.0055
.0053
.0054 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -04.1
-02.0
00.0
01.9
03.9
05.9
08.0 | 0.175
0.177
0.175
0.173
0.174
0.173
0.175 | .0302
.0306
.0307
.0307
.0305
.0303 | 0076
0067
0062
0067
0082
0101
0125 | -0.025
-0.053
-0.081 | 0132
0060
.0001
.0059
.0132
.0212
.0285 | .0082
.0042
.0002
0036
0076
0112
0142 | .0059
.0058
.0057
.0057
.0057
.0058
.0061 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.40 | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.227
-0.114
-0.000
0.114
0.232
0.456 | .0368
.0244
.0203
.0245
.0378 | .0342
.0223
.0077
0037
0127
0290 | -0.001
0.000
0.000
-0.001
0.000
0.000 | .0004
.0005
.0006
.0007
.0005 | .0000
.0000
.0001
.0000
.0001 | .0054
.0052
.0052
.0051
.0051 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4 | -04.1
-02.1
00.0
01.9
03.9
05.9
08.0 | 0.173
0.174
0.172
0.169
0.168
0.167
0.165 | .0294
.0297
.0297
.0297
.0294
.0291 | 0095
0087
0083
0083
0095
0105
0119 | 0.052
0.025
-0.001
-0.026
-0.054
-0.082
-0.111 | 0127
0058
.0004
.0063
.0134
.0207
.0275 | .0079
.0040
.0001
0036
0075
0111
0140 | .0055
.0055
.0053
.0052
.0054
.0055
.0057 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.60 |) | | | | | | -04.2
-02.0
00.0
02.2
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.189
-0.093
0.001
0.102
0.208
0.413 | .0326
.0224
.0188
.0229
.0343 | .0324
.0211
.0092
0048
0170 | -0.001
0.000
0.001
0.002
0.002
0.002 | 0002
0005
0004
0003
0003 | .0004
.0001
.0001
0002
0003 | .0044
.0043
.0043
.0043
.0043 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3
03.3 | -06.0
-04.0
-01.9
00.0
02.0
04.0
06.0
08.0 | 0.152
0.156
0.152
0.156
0.159
0.160
0.160
0.163 | .0272
.0276
.0276
.0277
.0280
.0280
.0280 | 0122
0115
0109
0113
0114
0123
0131. | 0.002
-0.025
-0.052
-0.077 | 0188
0128
0062
0004
.0058
.0123
.0180 | .0089
.0060
.0028
0003
0032
0063
0093 | .0049
.0047
.0045
.0043
.0044
.0045
.0048 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 2.00 |) | | | | | | -04.0
-01.9
00.2
02.3
04.4
08.7 | 00.1
00.0
00.0
00.0
00.0
00.0 | -0.154
-0.078
0.001
0.088
0.173
0.341 | .0291
.0208
.0177
.0217
.0312
.0701 | .0241
.0173
.0078
0021
0111
0255 | 0.000
0.000
0.001
0.001
0.001 | 0003
0003
0002
0002
0000 | .0001
.0001
0001
.0000
0000 | .0036
.0036
.0035
.0036
.0036 | .0000
.0000
.0000
.0000
.0000 |
.0000
.0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.4
03.4
03.4
03.4 | -06.0
-04.0
-01.9
00.0
02.0
04.0
06.0
08.1 | 0.131
0.134
0.134
0.135
0.138
0.138
0.139
0.141 | .0259
.0259
.0259
.0259
.0263
.0264
.0264 | | 0.074
0.050
0.025
0.001
-0.022
-0.047
-0.072
-0.100 | 0127
0089
0044
0000
.0040
.0083
.0120
.0158 | .0061
.0042
.0020
.0001
0020
0041
0059 | .0038
.0037
.0037
.0036
.0037
.0037
.0038 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 (F1 $^{\rm M}_1$ C1 $^{\rm V}_1$ N3) - Continued | | and the second s | | | | ıfigurati
= 1.0 - | | Fwd | <u>\</u> | | | |--|--|---|---|--|---|--|--|---|--|--| | α, deg | β, deg | C _L | c _D | Cm | $c_{\mathbf{Y}}$ | Cn | c ₁ | $^{\mathtt{C}_{\mathrm{D}_{\!b_{\mathbf{F}}}}}$ | c _{DpI} | $c_{D_{b_O}}$ | | | | b | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.134
-0.069
-0.003
0.065
0.135
0.273 | .0277
.0199
.0166
.0188
.0261 | .0158
.0104
.0039
0025
0078
0175 | 0.000 | .0003
.0003
.0002
.0001
.0001 | .0002
.0002
.0002
.0002
.0002 | .0035
.0035
.0035
.0036
.0036 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.9
02.9
03.0
03.0
03.0
03.0
03.0 | -06.0
-04.0
-02.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.100
0.100
0.099
0.100
0.101
0.101
0.101 | •0221
•0222 | 0068
0063
0055
0055
0057
0066
0075 | 0.020
-0.000
-0.021
-0.042
-0.064 | 0071
0050
0024
.0001
.0027
.0053
.0073 | .0044
.0030
.0015
.0002
0012
0027
0039
0050 | .0037
.0037
.0037
.0036
.0036
.0036
.0037 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | | | | -04.2
-02.2
-00.1
01.9
04.0
08.1 | 00 • 1
00 • 1
00 • 1
00 • 1
00 • 1 | -0.110
-0.055
0.001
0.059
0.117
0.237 | .0248
.0178
.0149
.0170
.0235 | | 0.000 | .0001
.0000
.0001
.0000
.0000 | .0001
.0001
.0001
.0001
.0001 | .0029
.0030
.0030
.0029
.0029 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
-00.1
-02.1
-04.2
-06.3
-08.4 | 0.089
0.088
0.086
0.088
0.088
0.089
0.090 | .0201
.0198
.0195
.0196
.0199
.0203
.0205 | 0036
0038
0047
0061 | 0.038
0.018
0.000
-0.019
-0.038
-0.059 | 0032
0025
0015
.0000
.0015
.0027
.0033 | .0001
0012
0024
0036 | .0031
.0031
.0031
.0030
.0030
.0030 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.9
04.9
05.0
05.0
05.1
05.1
05.2 | -06.0
-04.0
-01.9
-00.1
-02.1
-04.2
-06.3
-08.4 | 0.149
0.147
0.145
0.147
0.147
0.147
0.148
0.150
0.151 | .0281
.0280
.0283
.0285
.0291 | 0107
0089
0076
0074
0076
0090
0106
0118 | 0.038
0.019
0.000
-0.019
-0.039 | 0012
0011
0010
.0000
.0008
.0011
.0012 | .0037
.0026
.0014
.0001
0011
0023
0034 | .0031
.0031
.0030
.0030
.0030
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.50 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.091
-0.044
0.003
0.051
0.102
0.205 | .0220
.0160
.0136
.0153
.0209 | .0039
.0016
0015
0042 | | .0003
.0003
.0001 | .0002
.0002
.0001
.0001
.0001 | .0023
.0023
.0023
.0023
.0023 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3
03.4 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.079
0.077
0.075
0.077
0.077
0.078
0.079
0.082 | .0177
.0174
.0176
.0179 | 0028
0032
0043
0060 | 0.037
0.018
0.000
-0.020
-0.038
-0.057 | | .0036
.0025
.0013
.0001
0011
0023
0033 | .0024
.0024
.0024
.0024
.0024
.0024
.0024 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 $(F_1W_1C_1V_1N_3)$ - Continued | | *** | | | | | | | | | | |--|--|---|--|---|--|---|---|--|---|---| | | | (b |) Mass-fl
m _I /m _∞ ≈ | Low confi | guration $_{0}/m_{\infty}=1$. | N _{3B} ; - | Fwd | | | | | α, deg | β, deg | c _L | C _D | C _m | СY | Cn | Cl | $^{\mathtt{C}}{_{\mathtt{D}_{\mathbf{b_{F}}}}}$ | cDPI | с _{DbO} | | | | | | | M = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.224
-0.120
-0.020
0.087
0.198
0.424 | .0324
.0215
.0177
.0203
.0312
.0789 | .0012
.0031
.0036
.0059
.0095 | -0.001
0.000
0.000
-0.001
0.000
0.001 | 0009
0008
0004
0001
0001
.0002 | .0003
.0004
.0004
.0002
.0002 | .0019
.0017
.0018
.0020
.0019 | .0010
.0009
.0007
.0005
.0003 | .0000
.0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.1
-02.0
00.0
01.9
03.9
05.9 | 0.143
0.144
0.140
0.138
0.138
0.137 | .0241
.0247
.0247
.0245
.0242
.0239 | | 0.044
0.021
0.000
-0.021
-0.045
-0.070 | 0110
0051
0003
.0043
.0104
.0176 | .0065
.0034
.0003
0026
0058
0089 | .0023
.0020
.0020
.0020
.0021
.0022 | .0004
.0004
.0004
.0004
.0005 | .0000
.0000
.0000
.0000 | | | | | | | м = 0.85 | | | | | | | -04.4
-02.1
00.0
02.1
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.244
-0.127
-0.017
0.100
0.222
0.464 | .0346
.0218
.0179
.0213
.0338
.0878 | .0048
.0044
.0031
.0033
.0052 | -0.001
0.000
0.000
0.000
0.000
0.001 | 0008
0007
0003
.0001
0001 | .0003
.0002
.0003
.0002
.0002 | .0018
.0019
.0019
.0018
.0019
.0023 | .0010
.0010
.0008
.0005
.0004 | .0000
.0000
.0000
.0000 | |
03.3
03.3
03.3
03.3
03.3 | -04.1
-02.1
00.0
01.9
03.9
05.9 | 0.159
0.160
0.156
0.155
0.153
0.152 | .0254
.0257
.0257
.0255
.0255
.0254 | .0036
.0042
.0044
.0040
.0029 | 0.046
0.021
-0.001
-0.022
-0.047
-0.073 | 0116
0053
0003
.0046
.0111
.0186 | .0073
.0039
.0004
0029
0065
0100 | .0022
.0022
.0021
.0022
.0021
.0023 | .0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 0.95 | ; | | | | | | -04.5
-02.2
00.0
02.2
04.4
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.270
-0.137
-0.017
0.115
0.249
0.515 | .0380
.0231
.0186
.0225
.0366
.0981 | .0110
.0039
.0003
0049
0071 | 0.000 | 0013
0011
0003
.0001
.0000 | .0006
.0005
.0005
.0004
.0004 | .0018
.0019
.0019
.0020
.0020 | .0026
.0019
.0010
.0006
.0004 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.00 | | | | • | | | -04.5
-02.2
00.0
02.2
04.5
09.1 | 00.0
00.0
00.0
00.0
00.0 | -0.286
-0.150
-0.023
0.113
0.257
0.545 | .0451
.0287
.0240
.0270
.0418 | 0183 | 0.000
-0.001
-0.001
-0.001 | | .0000
.0005
.0003 | .0010
.0012
.0012
.0013
.0013 | .0024
.0021
.0012
.0010
.0005 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.0
-02.1
00.0
01.9
03.9
05.9 | 0.188
0.188
0.188
0.184
0.186
0.188 | .0324
.0326
.0327
.0331
.0322 | 0143
0148 | 0.022
-0.001
-0.024
-0.050 | 0057
0001
.0052
.0123 | 0004
0030
0067 | .0018
.0016
.0016
.0013
.0020 | .0008
.0007
.0007
.0007
.0007 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.10 |) | | | | | | -02.2
00.0
02.2 | 00.0 | -0.155
-0.031
0.104 | .0307
.0255
.0288 | .0236
.0099
0037 | 0.000 | ÷.0007
~.0002
.0002 | 0002
.0001
.0001 | •0055
•0053
•0053 | •0016
•0016
•0014 | .0000 | | | | | | | | | | <u></u> | | | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($F_1W_1C_1V_1N_3$) - Continued | | | | | | = 1.0 - (| | | 0 | 0 | C- | |----------------|--------------------|------------------|-------------------------------------|----------------|------------------|--------------|----------------|------------------|------------------|------------------| | α, deg | β, deg | $c_{\rm L}$ | C _D | Cm | CY | Cn | Cı | C _{DbF} | _C DpI | C _{DbO} | | | | | | | M = 1.25 | | | | | | | -04.4
-02.2 | 00.0 | -0.258
-0.139 | .0436
.0297 | .0393
.0267 | -0.001
0.000 | 0007
0007 | .0000 | •0060
•0056 | .0015
.0014 | .0000 | | 00.0 | 00.0 | -0.021 | .0251 | .0122 | -0.001
-0.002 | 0003 | 0004 | .0053
.0053 | .0010 | .0000 | | 04.5 | 00.0 | 0.232 | | 0137
0351 | | | 0003
.0001 | .0057
.0063 | •0006
•0004 | .0000 | | 03.4 | -04.0
-02.0 | 0.169 | | 0086
0079 | 0.049 | 0132
0060 | .0074
.0034 | •0059
•0058 | .0006 | .0000 | | 03.4 | 00.0 | 0.166 | •0337 | 0074
0081 | -0.001
-0.025 | .0000 | 0004
0041 | •0057
•0056 | .0006
.0007 | .0000 | | 03.4 | 03.9 | 0.168 | •0338
•0337 | 0093
0105 | -0.052 | .0131 | 0079
0114 | •0059
•0060 | .0008
.0009 | .0000 | | 03.4 | 08.0 | 0.170 | •0334 | 0126 | -0.108 | .0285 | 0142 | •0063 | •0011 | •0000 | | | | | | | M = 1.40 | | | | | | | -04.4
-02.2 | 00.0 | -0.230
-0.121 | •0414
•0288 | .0360 | -0.002
-0.002 | .0004 | 0003
0003 | •0053
•0053 | .0013
.0013 | .0000 | | 00.0 | 00.0 | -0.008
0.105 | •0244
•0281 | .0099
0019 | | .0008 | 0002
0003 | •0052
•0051 | .0001 | .0000 | | 04.5 | 00.0 | 0.221 | .0410
.0927 | 0120
0300 | -0.001
0.000 | .0005 | 0002
.0000 | •0051
•0054 | •0005
•0003 | .0000 | | 03.4 | -04 · 1
-02 · 1 | 0.165 | •0329
•0334 | 0091
0082 | 0.050
0.023 | 0126
0057 | •0071
•0034 | •0056
•0055 | •0004
•0004 | •0000 | | 03.4 | 00.0 | 0.164 | ·0335 | 0071
0069 | -0.002
-0.027 | .0005 | 0003 | .0053 | .0003 | .0000 | | 03.4 | 03.9 | 0.162 | ·0335 | 0083
0097 | -0.053
-0.081 | .0134 | 0076
0114 | •0054
•0056 | •0005 | .0000 | | 03.3 | 08.0 | 0.159 | •0324 | 0114 | -0.109 | .0272 | 0143 | •0058 | •0009 | .0000 | | | | | | | M = 1.60 | | | | | | | -04.2
-02.0 | 00.1 | -0.188
-0.093 | 03730270 | .0335
.0220 | | 0014 | .0002
.0001 | •0044
•0043 | .0011
.0011 | .0000 | | 00.0 | 00.0 | -0.002
0.095 | .0238
.0273 | .0099 | 0.004 | | 0003
0005 | •0043
•0044 | •0009
•0006 | .0000 | | 04.3
08.7 | 00.0 | 0.199 | •0383
•0842 | 0151
0327 | 0.004 | 0005
0001 | 0007
0009 | •0043
•0045 | •0004 | .0000 | | 03.3 | -06.0 | 0.148 | •0318 | 0100 | | 0187 | .0087 | •0049 | •0004 | •0000 | | 03.3 | -04.0 | 0.148 | .0318
.0318 | 0094 | 0.028 | 0128 | •0058 | •0048 | •0004 | .0000 | | 03.3 | 00.0 | 0.149 | •0319
•0320 | 0094 | -0.020 | 0007 | 0039 | •0044 | •0005 | .0000 | | 03.3 | 04.0 | 0.154 | .0318
.0317
.0321 | 0118 | | .0113 | 0098 | •0047 | •0006 | .0000 | | 03.4 | 08.0 | 0.160 | *0321 | 0145 | M = 2.00 | .0231 | 0122 | •0052 | •0008 | •0000 | | -04.0 | 00.1 | -0.156 | • 0340 | .0260 | | | 0005 | .0037 | •0007 | .0000 | | -01.9 | 00.0 | -0.079 | •0257
•0228 | .0188 | 0.003 | 0020 | 0006 | .0036 | •0007 | .000 | | 02.3 | 00.0 | 0.082 | •0263
•0357 | 0006 | 0.004 | 0016 | 0009 | •0036 | •0006 | .0000 | | 08.7 | | | •0738 | | | | | •0038 | •0005 | .0000 | | 03.4 | | 0.129
0.131 | •0307
•0306 | | | | | •0038
•0038 | .0006 | .0000 | | 03.4 | -01.9 | 0.128 | •0303
•0305 | 0057 | 0.028 | 0057 | .0011 | •0037 | •0006 | .0000 | | 03.4 | 02.0 | 0.134 | •0307
•0307 | 0069 | -0.019 | .0030 | 0030 | •0037 | •0006 | .0000 | | 03.4 | 06.1 | 0.136 | .0308 | 0085 | -0.069 | .0116 | 0070 | •0038 | •0006 | .0000 | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($F_1W_1c_1V_1N_3$) - Continued | | | | | 711111111111111111111111111111111111111 | | MODDE 5 | , (11,101) | (1N3) - C | Onormaca | | |--|--|---|---|--|--|--|--|---|--|---| | | | m _I | (b) Mass/ $m_{\infty} \approx 0$. | -flow com
3, m_0/m_∞ | nfigurati
= 1.0 - | on N _{3B} ;
Concluded | Aft O | | | | | α, deg | β, deg | CL | c_{D} | Cm | c _Y | Cn | cı | $c_{D_{b_F}}$ | $c_{D_{D_I}}$ | с _D _{р0} | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.131
-0.068
-0.003
0.064
0.132
0.267 | .0323
.0248
.0217
.0239
.0309
.0603 | .0173
.0120
.0052
0011
0065 | 0.000 | 0010
0010
0007
0007
0005
0002 | 0004
0005
0007 | .0036
.0035
.0035
.0035
.0036 | .0004
.0004
.0004
.0004
.0004 | .0000
.0000
.0000
.0000 | | 02.9
02.9
03.0
03.0
03.0
03.0
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.100
0.098
0.097
0.098
0.098
0.098
0.098 | .0268
.0267
.0269 | 0059
0052
0042
0039
0045
0054
0063 | 0.001
-0.019
-0.040
-0.061 | 0085
0063
0033
0006
.0023
.0051
.0071
.0085 | .0032
.0018
.0004
0009
0022
0035
0048
0058 | .0036
.0036
.0035
.0035
.0036
.0037
.0037 | .0004
.0004
.0004
.0004
.0004
.0004
.0005 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.00 | | | | | | | -04.2
-02.2
-00.1
01.9
04.0
08.1 | 00.1
00.1
00.1
00.1
00.1 | -0.107
-0.053
0.002
0.058
0.115
0.231 | .0294
.0229
.0203
.0221
.0283
.0544 | .0124
.0084
.0037
0004
0042 | 0.000 | 0009
0009
0006
0004
0002
.0001 | .0002
.0000
0003
0005
0009 | .0031
.0030
.0030
.0029
.0029 | .0002
.0002
.0002
.0002
.0002 | .0000
.0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.4 | 0.089
0.087
0.086
0.086
0.086
0.087
0.088
0.089 | .0255
.0251
.0246
.0244
.0246
.0250
.0254 | 0049
0034
0024
0023
0026
0037
0053 | 0.057
0.036
0.018
0.001
-0.018
-0.036
-0.055
-0.078 | 0038
0030
0018
0002
.0015
.0028
.0033 | .0029
.0017
.0005
0007
0020
0032
0044
0055 | .0030
.0030
.0030
.0030
.0030
.0031
.0032 | .0002
.0002
.0002
.0002
.0002
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04 · 8
04 · 9
05 · 0
05 · 0
05 · 1
05 · 1
05 · 2 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.4 | 0.145
0.144
0.142
0.144
0.143
0.144
0.145
0.147 | .0332
.0329
.0331
.0332 | 0086
0072
0061
0060
0064
0077
0096 | 0.037
0.019
0.002
-0.017
-0.036 | | .0024
.0012
.0002
0010
0023
0035
0046
0057 |
.0031
.0031
.0031
.0030
.0030
.0031
.0032 | .0002
.0002
.0002
.0002
.0002
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.50 | | | | | | | -04.2
-02.2
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.088
-0.042
0.004
0.052
0.100
0.199 | •0268
•0211
•0185
•0204
•0261
•0492 | .0049
.0025
0005
0032 | 0.000
0.000
0.001
0.001 | 0008
0007
0004
0001 | .0006
.0003
.0001
0004
0008
0015 | •0024
•0024
•0024
•0024
•0024 | *0002
*0001
*0001
*0001
*0001 | .0000
.0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.5 | 0.079
0.077
0.076
0.076
0.076
0.077
0.079
0.080 | .0227
.0228
.0233
.0238 | 0033
0023
0019
0021
0032 | 0.036
0.018
0.001
-0.017
-0.035
-0.052 | 0023
0013
0000
.0014
.0019
.0015 | .0019
.0006 | *0024
*0025
*0025
*0025
*0024
*0024
*0024 | .0001
.0001
.0001
.0001
.0001
.0002
.0002 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.5
04.7
04.8
04.8
05.0
05.1
05.2
05.4 | -06.4
-04.2
-03.2
-02.1
00.0
02.1
04.3
06.4 | 0.128
0.127
0.126
0.125
0.126
0.126
0.127
0.128
0.128 | .0307
.0305
.0305 | 0049
0043
0047
0061
0078 | 0.036
0.027
0.019
0.001
-0.017
-0.033
-0.051 | | .0025
.0014
.0008
.0002
0010
0021
0032
0043
0056 | •0025
•0025
•0025
•0025
•0025
•0024
•0024
•0024
•0025 | *0001
*0001
*0001
*0001
*0001
*0001
*0002
*0002 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($\mathbf{F_1W_1C_1V_1N_3}$) - Continued | | | (c | | | guration | | Fwd | | | | |--|--|---|--|--|--|---|---|--|--|---| | | | | m _I /m _∞ | = 0, m _O / | $m_{\infty} = 1.0$ | | | 1 | | | | α, deg | β, deg | c _L | c _D | Cm | СY | Cn | c ₁ | с _{рь} | ^{CD} ⊳I | СЪО | | | | | | | м = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.225
-0.120
-0.019
0.088
0.193
0.420 | .0338
.0230
.0193
.0221
.0323
.0797 | .0024
.0029 | -0.001
-0.000
-0.000
-0.000
0.000
0.001 | 0011
0009
0005
0002
0003
0001 | .0002
.0002
.0002
.0000
.0002 | .0020
.0017
.0018
.0018
.0018 | .0011
.0009
.0006
.0004
.0003 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.141
0.141
0.139
0.135
0.133
0.133 | .0254
.0256
.0256
.0256
.0249
.0245 | .0060
.0049 | 0.043
0.020
-0.001
-0.021
-0.045
-0.070 | 0111
0052
0004
.0042
.0102
.0174 | .0063
.0032
.0002
0027
0057
0089 | .0017
.0018
.0020
.0016
.0018 | .0004
.0003
.0003
.0003
.0004 | .0000
.0000
.0000
.0000 | | | | <u> </u> | | | M = 0.85 | | | <u></u> | | | | -04.4
-02.2
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.247
-0.133
-0.021
0.096
0.215
0.459 | .0362
.0230
.0191
.0224
.0337
.0880 | .0044
.0039
.0023
.0024
.0043 | -0.001
0.000
0.000
-0.001
0.000
0.000 | 0011
0009
0005
0001
0002 | .0003
.0004
.0003
.0002
.0003 | .0017
.0018
.0017
.0018
.0020 | .0012
.0010
.0008
.0005
.0003 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.1
-02.0
00.0
01.9
03.9
05.9 | 0.156
0.160
0.157
0.154
0.152
0.149 | .0263
.0268
.0269
.0270
.0267 | •0018 | -0.001
-0.022 | 0117
0054
0003
.0046
.0109
.0184 | .0071
.0037
.0003
0030
0064
0098 | .0021
.0020
.0020
.0019
.0021
.0023 | .0005
.0004
.0004
.0004
.0005 | .0000
.0000
.0000
.0000
.0000 | | | | - | | | M = 0.95 | | | | | | | -02.2
00.0
02.2 | 00.0 | -0.138
-0.019
0.112 | •0245
•0195
•0236 | | -0.001
-0.000
-0.002 | 0011
0005
0000 | .0003
.0004
.0002 | •0018
•0019
•0020 | .0013
.0011 | •0000
•0000 | | | l | <u> </u> | | | M = 1.00 | <u> </u> | l | <u> </u> | | 1 | | -04.5
-02.2
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.290
-0.151
-0.023
0.113
0.258
0.541 | .0453
.0291
.0237
.0276
.0421 | .0224
.0080
0020
0103
0183
0318 | 0.000
-0.001
-0.002 | 0014
0015
0006
0002
0002 | 0001
0005
.0005
.0003
.0004
0005 | .0014
.0014
.0014
.0015
.0017 | .0021
.0018
.0013
.0009
.0005 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.0
-02.1
00.0
01.9
03.9
05.9 | 0.188
0.189
0.186
0.184
0.184 | •0332 | | | | .0078
.0040
.0004
0030
0068
0109 | .0020
.0018
.0017
.0018
.0019
.0022 | .0008
.0007
.0006
.0007
.0008
.0009 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($F_1W_1C_1V_1N_3$) - Continued | | | 71 1111(0. | DINAMIO | 21141.040.1731 | 1101100 0. | - HODEL |) (LIMICI | /1N3) - C | oncidued | | |--|---|--|---|--|-------------------------------------|--|---|---|---|--| | | | m | (c) Mass $I/m_{\infty} = 0$ | -flow con, $m_{\rm O}/m_{\infty}$ = | figurati
= 1.0 - C | on N _{3C} ;
ontinued | Fwd | \bigcirc | | | | α, deg | β, deg | C _L | c_{D} | Cm | СY | C _n | Cl | c _{DbF} | cDp1 | $c_{D_{D_O}}$ | | | | | | | M = 1.25 | | | | | | | -04.4
-02.2
00.0
02.2
04.4
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.264
-0.144
-0.027
0.100
0.227
0.476 | .0462
.0316
.0266
.0300
.0428 | .0270
.0123
0015 | -0.002
-0.002
-0.002 | 0009
0009
0006
0001
.0000 | 0000
0002
0006
0011
0006
.0001 | .0056
.0054
.0052
.0052
.0056 | .0014
.0012
.0009
.0008
.0006 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3 | -04.0
-02.0
00.0
01.9
03.9
05.9 | 0.165
0.167
0.164
0.161
0.162
0.163 | .0342
.0347
.0350
.0350
.0350 | 0080
0092 | 0.022
-0.002
-0.026
-0.053 | 0132
0062
0002
.0056
.0128
.0208 | .0068
.0029
0009
0044
0081
0116 | .0059
.0058
.0056
.0057
.0059 | .0006
.0006
.0006
.0007
.0009 | .0000
.0000
.0000
.0000 | | | • | 1 | | | M = 1.60 | | | | | • | | -04.2
-02.1
00.0
02.1
04.3
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.191
-0.099
-0.007
0.091
0.194
0.399 | .0395
.0293
.0254
.0289
.0396
.0843 | .0346
.0236
.0116
0016
0134
0319 | 0.005 | 0014 | .0000
0002
0005
0006
0008 | .0045
.0043
.0043
.0044
.0043 | .0009
.0006
.0004
.0002
.0001 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2
03.3 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.143
0.145
0.143
0.146
0.148
0.148
0.151
0.153 | .0331
.0334
.0334
.0335
.0335
.0331 | 0081
0094
0108 | -0.074 | 0185
0129
0065
0007
.0051
.0109
.0170 | .0085
.0056
.0024
0007
0040
0071
0100
0125 | .0049
.0047
.0045
.0043
.0044
.0047
.0049 | .0002
.0000
.0000
.0001
.0003
.0005
.0006 | .0000
.0000
.0000
.0000
.0000
.0000 | | | 1 | 1 00133 | | 10151 | M = 2.00 | •0220 | •0125 | | | 1.0000 | | -04.1
-01.9
00.1
02.2
04.4
08.7 | 00.0
00.0
00.0
00.0
00.0 | -0.157
-0.081
-0.002
0.080
0.166
0.332 | •0365
•0280
•0248
•0282
•0373
•0751 | .0271
.0199
.0102
.0005
0083 | 0.003
0.003
0.004 | 0029
0025
0024
0020
0019 | 0007
0009
0011
0014
0017 | •0036
•0035
•0035
•0035
•0035
•0037 | •0006
•0006
•0005
•0004
•0002
•0000 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.4
03.4 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.128
0.129
0.125
0.126
0.129
0.129
0.131
0.129 | .0327
.0327
.0323
.0321
.0324
.0324
.0325 | 0058
0053
0046
0048
0057
0064
0074 | -0.044
-0.068 |
0143
0106
0061
0019
.0025
.0072
.0114
.0157 | .0047
.0026
.0004
0015
0036
0056
0075
0089 | .0039
.0037
.0036
.0036
.0036
.0036
.0038 | .0004
.0002
.0002
.0002
.0004
.0006
.0007 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | 3 | | TABLE V.- AERODYNAMIC CHARACTERISTICS OF MODEL 3 ($F_1W_1C_1V_1N_3$) - Concluded | α, deg | β, deg | c _L | c _D | C _m | СY | Cn | CZ | $^{\mathrm{C}_{\mathrm{D}_{\mathrm{b}_{\mathrm{F}}}}}$ | c _D pI | $c_{D_{b_0}}$ | |--|---|---|--|--|--|--|--|--|---|--| | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
03.8
04.0 | 00.0
00.0
00.0
00.0
00.0 | -0.130
-0.068
-0.003
0.064
0.122
0.131
0.216 | .0346
.0272
.0240
.0262
.0321
.0334 | .0179
.0128
.0062
0002
0050
0055
0120 | 0.002 | 0013 | 0003
0007
0009
0012
0014
0017 | .0035
.0035
.0035
.0035
.0035
.0036 | .0007
.0006
.0006
.0006
.0006
.0006 | .0000
.0000
.0000
.0000
.0000 | | 08.2
02.9
02.9
03.0
03.0
03.0
03.0
02.9
02.9 | 00.0 -06.0 -04.0 -02.0 00.0 02.0 04.0 06.0 08.0 | 0.265
0.100
0.098
0.097
0.097
0.098
0.098
0.098
0.098 | .0623
.0298
.0293
.0291
.0291
.0291
.0294
.0293 | 01570054004500320037004800550067 | 0.065
0.043
0.021
0.002
-0.019
-0.040
-0.061 | 0004
0089
0067
0038
0010
.0020
.0049
.0070
.0085 | 0019
.0028
.0013
0001
0013
0025
0038
0051
0061 | .0037
.0036
.0036
.0035
.0035
.0036
.0037
.0037 | .0005
.0005
.0005
.0005
.0006
.0006
.0007 | .0000
.0000
.0000
.0000
.0000
.0000 | | | 0000 | 1 000,01 | | | M = 3.00 | | | | | | | -04.2
-02.1
-00.1
01.9
04.0
08.1 | 00 • 1
00 • 1
00 • 1
00 • 1
00 • 1 | -0.106
-0.052
0.002
0.059
0.114
0.229 | .0319
.0255
.0228
.0246
.0308 | .0128
.0092
.0047
.0005
0034 | 0.001 | 0010
0010
0008
0005
0002
0001 | .0002
0002
0006
0009
0013
0019 | .0031
.0030
.0030
.0029
.0029 | .0005
.0005
.0005
.0004
.0004 | .0000
.0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.4 | 0.089
0.087
0.085
0.086
0.086
0.087
0.088
0.089 | .0277
.0272
.0271
.0272
.0275 | 0043
0026
0014
0015
0020
0031
0047
0059 | 0.037
0.018
0.001
-0.018
-0.036 | 0041
0032
0020
0004
.0014
.0028
.0035 | .0024
.0012
.0001
0011
0023
0035
0046 | .0031
.0030
.0030
.0030
.0030
.0031
.0032 | .0003
.0004
.0004
.0004
.0005
.0005 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | M = 3.50 |) | | | | • | | -04.2
-02.1
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.087
-0.041
0.005
0.052
0.100
0.198 | .0294
.0238
.0213
.0230
.0291 | .0056
.0031
.0002 | -0.001
-0.001
-0.000
-0.000 | 0008
0008
0005
0001
.0001 | .0006
.0002
0001
0006
0011
0021 | .0024
.0024
.0024
.0024
.0024 | .0004
.0004
.0003
.0003
.0003 | .0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.079
0.077
0.075
0.076
0.076
0.078
0.079
0.080 | .0256 | 0023
0013
0011
0015
0028
0042 | 0.036
0.017
0.000
-0.017
-0.034
-0.051 | .0013
.0019
.0014 | 0009
0020
0032
0042 | •0024
•0024
•0024
•0024
•0024
•0025
•0025 | .0003
.0002
.0003
.0003
.0003
.0003
.0004 | .0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | table vi.- Aerodynamic characteristics of model 4 $(F_2W_2C_1V_2N_1)$ | | | | (a) Mass | s-flow co | onfigurat
m _O /m _∞ = | | 0 0
Af | -0 | | | |--|--|---|--|--|--|---|--|---|--|--| | α, deg | β, deg | $c_{\mathtt{L}}$ | c_D | Cm | СY | Cn | Cı | c _{DbF} | CDpI | c _{DbO} | | | | | | | M = 0.65 | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.6 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.195
-0.103
-0.015
0.077
0.175
0.379 | .0281
.0190
.0160
.0182
.0272
.0691 | 0017
.0043
.0074
.0121
.0186 | 0.000
0.000
0.000
-0.001
0.000
-0.001 | 0002
0001
.0000
.0001
.0001 | .0001
.0000
.0002
.0002
.0003 | .0020
.0020
.0022
.0022
.0022 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.2
-02.2
-00.1
01.8
03.8
05.8
07.9 | 0.130
0.128
0.126
0.124
0.124
0.125
0.127 | .0212
.0215
.0217
.0217
.0211
.0207 | .0132 | -0.026
-0.052
-0.082 | 0086
0039
.0000
.0038
.0085
.0138 | .0004
.0002
.0003
.0005
.0005
.0004 | .0029
.0026
.0022
.0023
.0024
.0026 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | L | | | M = 0.85 | | | | | | | -04.3
-02.2
00.0
02.2
04.4
08.9 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.212
-0.114
-0.016
0.087
0.194
0.418 | .0300
.0195
.0160
.0190
.0293 | .0023
.0068
.0082
.0115
.0167 | 0.000
0.000
0.000 | | .0001
.0001
.0002
.0002
.0003 | .0019
.0020
.0019
.0019
.0020 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.2
-02.2
-00.1
01.8
03.8
05.8
07.9 | 0.144
0.142
0.140
0.137
0.136
0.140
0.143 | .0227
.0227
.0227
.0228
.0221
.0219 | .0135
.0115
.0090 | 0.054
0.026
-0.001
-0.026
-0.055
-0.087
-0.118 | 0093
0042
.0000
.0041
.0091
.0151
.0210 | .0000
.0000
.0003
.0007
.0009
.0010 | .0024
.0023
.0022
.0022
.0023
.0026
.0024 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | · · · · · · · · | | M = 0.95 | | | | | | | -04.4
-02.2
00.0
02.2
04.4
09.0 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.220
-0.110
-0.010
0.100
0.221
0.475 | .0337
.0231
.0193
.0226
.0338
.0901 | .0020
.0036
.0037
.0040
.0060 | 0.001
0.001
0.001
0.000
0.000 | 0002
0003
0002
.0000
.0001 | .0003
.0000
.0001
.0002
.0003 | .0011
.0011
.0011
.0010
.0013 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | | | | | | M = 1.00 | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | -00 · 1
-00 · 1
-00 · 1
-00 · 1
-00 · 1
-00 · 1 | -0.245
-0.131
-0.024
0.091
0.220
0.499 | .0430
.0311
.0264
.0294
.0402
.1008 | .0246
.0197
.0149
.0116
.0049 | 0.001
0.001
0.001
0.000
0.000
-0.001 | 0003
0002
0002
.0000
.0001 | .0001
.0000
.0001
.0002
.0002 | .0054
.0048
.0055
.0050
.0054 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.2
-02.1
-00.1
01.8
03.8
05.9
07.9 | 0.155
0.156
0.155
0.151
0.151
0.148
0.145 | .0327
.0341
.0333
.0330
.0334
.0320 | .0082
.0084
.0088
.0086
.0075
.0067 | -0.059
-0.092 | 0114
0053
0001
.0049
.0112
.0179
.0246 | .0004
.0002
.0003
.0004
.0003
.0002 | .0056
.0050
.0049
.0051
.0053
.0057 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 $(F_2W_2C_1V_2N_1)$ - Continued | and the state of t | <u>.</u> | | | | nfigurati
= 1.0 - | on N _{1A} ;
Continued | i / O (| l O | |
0.0000 | |--|---|--|---|--|--|--|--|---|--|--| | α , deg | β, deg | c _L | Ср | C _m | СY | Cn | Cl | $^{\mathrm{C}}\mathrm{D}_{\mathrm{b_F}}$ | c ^{DPI} | c _{DpO} | | | | | | | M = 1.25 | | | | | | | -04.4
-02.1
00.0
02.2
04.5 | -00.1
-00.1
-00.1
-00.1
-00.1 | -0.222
-0.116
-0.011
0.102
0.223
0.461 | .0383
.0266
.0225
.0259
.0384
.0927 | .0292
.0222
.0108
.0002
0099 | 0.001
0.001
0.000
-0.001
0.000
-0.001 | 0004
0003
0002
.0000
.0001 | .0002
.0001
.0002
.0002
.0002 | .0074
.0073
.0072
.0071
.0068
.0067 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.4
03.4
03.4
03.3
03.3
03.3 | -04.2
-02.2
-00.1
01.8
03.9
05.9
07.9 | 0.163
0.165
0.163
0.159
0.159
0.157
0.156 | .0309
.0309
.0309
.0307
.0307
.0302 | | -0.026 | 0093
0042
0001
.0039
.0091
.0146
.0201 | .0008
.0003
.0002
.0002
0002
0007
0013 | .0070
.0071
.0070
.0070
.0070
.0072 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | | | | | M = 1.40 | | | | · | | | -04.4
-02.1
00.0
02.2
04.5
08.9 | -00.1
-00.1
-00.1
-00.1
-00.1 | -0.200
-0.101
-0.002
0.096
0.206
0.426 | .0350
.0247
.0214
.0244
.0361
.0855 | .0246
.0180
.0081
0006
0099 | -0.001 | 0004
0004
0003
.0000
0001
.0002 | .0003
.0002
.0003
.0003
.0002 | •0067
•0066
•0067
•0067
•0066
•0067 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.2
-02.2
-00.1
01.8
03.8
05.9
07.9 | 0.152
0.152
0.150
0.147
0.147
0.147 | .0292
.0292
.0290
.0290
.0289
.0287 | 0049
0051
0056 | -0.052
-0.080 | 0042 | .0013
.0006
.0003
.0000
0006
0012 | .0069
.0070
.0069
.0068
.0069
.0070 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | | I | <u> </u> | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
06.1
08.2 | 00.0
00.0
00.0
00.0
00.0
00.0 | -0.121
-0.062
-0.001
0.063
0.126
0.191
0.255 | .0258
.0191
.0166
.0190
.0261
.0379
.0547 | .0078
.0051
.0013
0023
0058
0092 | -0.001
-0.001
-0.001
0.000
0.000
0.000 | .0000
.0000
0001
.0000
0001
0001 | .0001
.0001
.0002
.0001
.0001 | .0039
.0039
.0039
.0038
.0038 | .0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 03.0
03.0
03.0
03.0
03.0
03.0
03.0
03.0 | -06.0
-04.0
-02.0
00.0
01.9
04.0
06.0
08.0 | 0.092
0.093
0.093
0.094
0.095
0.095
0.093
0.091 | .0222
.0221
.0219
.0220
.0221
.0222
.0222 | 0042
0045
0042
0045
0049
0050
0053 | 0.060
0.039
0.019
0.000
-0.019
-0.040
-0.060
-0.082 | 0053
0037
0018
0001
.0018
.0038
.0053
.0065 | .0024
.0015
.0008
.0002
0006
0012
0020
0026 | .0038
.0039
.0038
.0038
.0038
.0038
.0039 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | | |
 | | | | | | | | | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 ($F_2W_2C_1V_2N_1$) - Continued | | | m _I / | a) Mass-
m _∞ = 1.0 | flow con: | figuration | on N _{lA} ;
Concluded | /O O Aft | | | | |--|---|---|---|---|--|---|--|--|--|---| | α, deg | β, deg | C _L | c_{D} | Cm | c _Y | Cn | Сı | $c_{\mathrm{D_{b_F}}}$ | $c_{D_{b_{\mathtt{I}}}}$ | c _{DbO} | | | | | | | M = 3.00 | | | | | | | -06.3
-04.2
-02.2
-00.1
01.9
04.0
06.1
08.1 | 00.1
00.1
00.1
00.1
00.1
00.1
00.1 | -0.152
-0.101
-0.049
0.003
0.056
0.109
0.164
0.220 | .0322
.0227
.0168
.0147
.0171
.0233
.0336 | .0038
.0031
.0019
0002
0018
0030
0048
0073 | -0.001
-0.001
0.000
0.000
0.000
0.000
0.000 | 0001
0000
0001
0001
0001
0001
0001 | .0001
.0001
.0001
.0001
.0001
.0001 | .0031
.0032
.0032
.0032
.0032
.0031
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.081
0.081
0.081
0.082
0.082
0.082
0.082
0.081 | .0200
.0198
.0196
.0197
.0199
.0202
.0204 | 0029
0028
0025
0023
0025
0028
0031
0032 | | 0031
0021
0012
0001
.0011
.0021
.0031 | .0024
.0016
.0008
.0001
0007
0014
0021
0026 | .0031
.0032
.0032
.0032
.0032
.0032
.0033 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.9
04.9
05.0
05.0
05.1
05.1
05.2
05.2 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.4 | 0.135
0.135
0.135
0.137
0.137
0.137
0.136
0.134 | .0278
.0276
.0277
.0280
.0283
.0285
.0287 | 0049
0045
0039
0049
0044
0049 | 0.059
0.038
0.019
0.000
-0.020
-0.039
-0.059
-0.081 | | .0022
.0015
.0008
.0001
0007
0013
0020
0028 | .0032
.0032
.0031
.0031
.0031
.0032
.0033 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | м = 3.50 | | | | | | | -04.2
-02.1
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.087
-0.043
0.002
0.048
0.095
0.189 | .0200
.0150
.0133
.0152
.0208 | 0016
0024 | -0.002
-0.002
-0.001
-0.001 | .0001
.0001
.0001
.0001
.0001 | .0002
.0001
.0001
.0001
.0000 | .0025
.0025
.0025
.0025
.0025
.0024 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.1
03.2
03.3
03.5 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.070
0.071
0.071
0.072
0.072
0.072
0.072
0.070
0.069 | .0178
.0175
.0173
.0175
.0179
.0182
.0186 | 0020
0020
0018
0019
0020
0021
0021 | 0.035
0.017
-0.001
-0.019
-0.037
-0.057 | 0014
0012
0006
.0001
.0008
.0013
.0014
.0008 | .0026
.0018
.0009
.0001
0008
0017
0023
0027 | .0025
.0025
.0025
.0025
.0025
.0025
.0025
.0025 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 (F2W2C1V2N1) - Continued | | | | (b) Mas | $m_{\infty} = 0$, | configura $m_0/m_\infty =$ | tion N _{1C} ; | O Af | t | | | |--|--|---|--|---|---|---|--|--|---|----------------------------------| | α, deg | β, deg | cL | c_{D} | Cm | CY | Cn | Cı | $^{\mathrm{C}}\mathrm{D}_{\mathrm{b_{F}}}$ | c _D pI | c _{Db0} | | | | | | | M = 0.65 | | | | | | | -04.2
-02.1
00.0
02.1
04.3
08.6 | 00.0
00.0
00.0
00.0
00.0 | -0.192
-0.100
-0.014
0.080
0.177
0.378 | .0325
.0231
.0201
.0222
.0314 | .0098
.0148 | -0.001
-0.001
-0.001
-0.002
-0.001
0.000 | 0002
0002
.0000
.0002
.0000 | .0002
.0002
.0002
.0001
.0001 | .0019
.0019
.0019
.0022
.0022 | .0002
.0002
.0002
.0003
.0003 | .0000
.0000
.0000
.0000 | | 03.2
03.2
03.2
03.2
03.2 | -04.1
-02.0
00.0
01.9
03.9
06.0 | 0.131
0.130
0.127
0.124
0.126
0.127 | .0253
.0257
.0257
.0257
.0254
.0249 | .0154 | 0.023 | 0086
0040
0000
.0039
.0086 | .0003
.0001
.0001
.0003
.0002 | .0027
.0024
.0023
.0022
.0025 | .0003
.0003
.0003
.0002
.0002 | .0000
.0000
.0000
.0000 | | | | | | | M = 0.85 | | | | | | | -04.3
-02.1
00.0
02.2
04.4
08.9 | 00.0
00.0
00.0
00.0
00.0 | -0.208
-0.108
-0.014
0.089
0.196
0.418 | .0341
.0238
.0205
.0233
.0336
.0823 | .0049
.0094
.0107
.0140
.0189 | -0.001
-0.001
-0.002
-0.001 | .0001
.0000
.0001
.0003
.0002 | .0006
.0003
.0002
.0002
.0001 | .0021
.0019
.0019
.0018
.0022 | .0002
.0002
.0002
.0002
.0003 | .0000
.0000
.0000 | | 03.3
03.3
03.2
03.3
03.3 | -04.1
00.0
01.9
03.9
06.0 | 0.146
0.141
0.138
0.140
0.142 | .0270
.0270
.0270
.0270
.0270 | .0156 | 0.053
-0.002
-0.028
-0.056
-0.087 | 0095
.0001
.0043
.0095
.0154 | 0001
.0002
.0006
.0007
.0008 | .0024
.0022
.0022
.0023
.0027 | .0003
.0003
.0002
.0002 | .0000
.0000
.0000 | | | | | | | M = 0.95 | | | | | | | -04.4
-02.1
00.0
02.2
04.4
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.223
-0.108
-0.014
0.104
0.219
0.480 | .0398
.0270
.0243
.0266
.0377 | .0093
.0044
.0063
.0045
.0081 | -0.001
-0.002 | .0013
.0001
.0004
.0003
.0001 | .0008
.0005
.0005
.0005
.0002 | .0010
.0010
.0007
.0008
.0012 | .0001
.0001
.0001
.0001
.0002 | .0000
.0000
.0000 | | | | | | | M = 1.00 | | | | | | | -04.4
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.259
-0.146
-0.036
0.087
0.221
0.499 | .0508
.0359
.0314
.0328
.0452 | .0324
.0234
.0151
.0039 | -0.003
-0.003 | .0000
.0008
.0005
.0001
0001 | 0014
.0000
.0009
.0008
.0004 | .0056
.0058
.0056
.0056
.0056 | .0010
.0011
.0010
.0010
.0011 | .000
.000
.000
.000 | | 03.3
03.3
03.3
03.3
03.3 | -04.1
-02.0
00.0
01.9
03.9
06.0 | 0.153
0.155
0.152
0.147
0.146
0.143 | .0368
.0371
.0378
.0363
.0366 | .0105 | -0.002
-0.031
-0.062 | 0055 | .0004
.0004
.0006
.0008
.0007
.0003 | •0051
•0051
•0049
•0051
•0055
•0054 | .0008
.0009
.0010
.0011
.0012 | .000
.000
.000
.000 | | | | | | • | M = 1.25 | | | | | | | -04.4
-02.1
00.0
02.3
04.5 | 00.0
00.0
00.0
00.0
00.0 | -0.216
-0.111
-0.008
0.104
0.220
0.453 | .0444
.0327
.0287
.0318
.0441 | | | 0019
0013
0008
0002
.0001 | 0021
0024
0020
0013
0006
.0000 | .0078
.0077
.0075
.0077
.0075 | .0012
.0012
.0011
.0012
.0011 | .000
.000
.000
.000 | | 03.4
03.4
03.4
03.4
03.4 | -04.1
-02.1
00.0
01.9
03.9
06.0 | 0.158
0.160
0.160
0.158
0.160
0.159 | .0368
.0369
.0367
.0368
.0366 | .0047
.0037
.0029
.0019
.0001 | 0.024
0.000
-0.025 | 0090
0040
0001
.0037
.0087
.0139 | .0006
0004
0009
0013
0021 | .0077
.0077
.0076
.0075
.0078 | .0010
.0010
.0011
.0011
.0011 | .000
.000
.000
.000 | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 (F2W2C1V2N1) - Continued | | | | DIMETIO | CIMINCIL | | A MODEL | 4 (F ₂ W ₂ C ₁ | 15HT) - 1 | Jonethaea | | |---|---|---|--|--|---|--|--|--
---|---| | | | | | | nfigurati
= 1.0 - (| on N _{IC} ;
Concluded | | ît. | | | | α, deg | β, deg | $c_{ m L}$ | c_{D} | Cm | С ^Х | C _n | c ı | $^{\mathrm{C}_{\mathrm{D}_{\mathrm{b}_{\mathrm{F}}}}}$ | cDp1 | c _{DpO} | | | | | | | M = 1.40 | | | | | | | -04.3
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.191
-0.094
0.003
0.103
0.212
0.425 | .0409
.0312
.0281
.0314
.0432 | .0281
.0218
.0119
.0025
0064
0232 | 0.003
0.003
0.003
0.002
0.003
0.002 | 0022
0019
0014 | 0004
0011
0016
0018
0020
0017 | .0073
.0072
.0072
.0072
.0072
.0072 | .0009
.0009
.0009
.0009
.0009 | •0000
•0000
•0000
•0000
•0000 | | 03.4
03.4
03.4
03.4
03.4
03.3 | -04.1
-02.0
00.0
01.9
03.9
06.0 | 0.157
0.160
0.156
0.154
0.152
0.150 | .0365
.0360
.0359
.0355 | 0009
0016
0019
0021
0026
0031 | | •0026
•0074 | 0001
0013
0019
0022
0028
0034 | .0076
.0075
.0074
.0073
.0074 | .0008
.0008
.0008
.0009
.0009 | .0000
.0000
.0000
.0000 | | | | | | | M = 2.50 | | | | | | | -04.3
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.108
-0.048
0.014
0.076
0.138
0.263 | .0306
.0255
.0251
.0284
.0360
.0665 | | 0.000
0.001 | 0011
0012
0017
0019
0021
0027 | .0018
.0018
.0018
.0015
.0011 | .0038
.0038
.0038
.0037
.0037 | .0005
.0005
.0005
.0005
.0005 | .0000
.0000
.0000
.0000 | | 03.0
03.0
03.0
03.0
03.0
03.0
03.0 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.109
0.109
0.107
0.107
0.106
0.103
0.100
0.098 | .0326
.0320
.0315
.0313
.0310 | 0032 | 0.039
0.020
0.001
-0.017
-0.037
-0.057 | 0071
0055
0036
0020
.0001
.0022
.0039
.0053 | .0043
.0032
.0023
.0013
.0002
0008
0017 | .0039
.0039
.0038
.0038
.0038
.0038
.0039 | .0005
.0005
.0005
.0005
.0005
.0005 | .0000
.0000
.0000
.0000
.0000
.0000 | | , | <u> </u> | 11 | | | M = 3.00 | | | | | | | -04.2
-02.1
-00.1
01.9
04.0
08.2 | 00.1
00.1
00.1
00.1
00.1 | -0.088
-0.036
0.019
0.071
0.124
0.230 | •0279
•0237
•0240
•0276
•0346
•0601 | .0031
.0015
0007
0024
0033
0063 | 0.001
0.000
0.001
0.000 | 0013
0014
0015
0015
0016
0022 | .0016
.0018
.0021
.0021
.0019 | .0030
.0030
.0030
.0030
.0030 | .0003
.0003
.0003
.0003
.0003 | •0000
•0000
•0000
•0000
•0000 | | 02.8
02.9
02.9
03.0
03.0
03.1
03.1
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.4 | 0.099
0.098
0.098
0.098
0.096
0.095
0.091
0.088
0.140 | .0313
.0309
.0307
.0305
.0302
.0302 | 0020
0018
0017 | -0.055 | | .0047
.0039
.0031
.0021
.0010
.0000
0012
0023
0029 | .0031
.0031
.0030
.0030
.0030
.0030
.0031
.0033 | .0003
.0003
.0003
.0003
.0003
.0003
.0003 | .0000
.0000
.0000
.0000
.0000
.0000
.0000 | | | 4 | | | t | M = 3.50 |) | 1 | | | | | -04.2
-02.1
-00.1
01.9
04.0
08.1
02.5
02.6
02.8 | 00.0
00.0
00.0
00.0
00.0
00.0
-06.4
-04.2
-02.1 | -0.074
-0.028
0.020
0.066
0.112
0.202
0.089
0.089
0.088 | .0268
.0231
.0236
.0273
.0342
.0574 | 0013
0029
0037
0040
0039 | -0.001
-0.002
-0.002
0.000
0.056
0.035 | 0011
0013
0012
0012
0019
0039
0031 | .0019
.0022
.0028
.0031
.0031
.0024 | .0024
.0025
.0025
.0024
.0024
.0024 | 0003
0003
0002
0002
0001
0001 | .0000
.0000
.0000
.0000
.0000 | | 02.9
03.1
03.2
03.3
03.5 | 00.0
02.1
04.3
06.4
08.6 | 0.088
0.087
0.085
0.083
0.080 | •0300
•0296
•0295
•0295
•0294 | 0028
0027
0024
0020 | -0.001
-0.019
-0.036
-0.055 | 0022
0013
0005
.0002
.0004
0004 | .0035
.0026
.0016
.0005
0006 | .0024
.0024
.0024
.0024
.0025 | 0001
0001
0001
0000
.0000 | .0000
.0000
.0000
.0000 | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 ($F_2W_2C_1V_2N_1$) - Continued | | ng dalampananahan baranta da bara | | | | iguratio
10/m∞ = 0 | | O Aft | \supset | | | |--|--|---|---|---|--|--|--|---|---|---| | α, deg | β, deg | c _L | c_{D} | Cm | СY | Cn | c _l | с _{Бр} ь | $c_{D^{\mathbf{p}}\mathbf{I}}$ | $c_{D_{bO}}$ | | | | | | | M = 0.65 | | | | | | | -04.3
-02.1
00.0
02.1
04.3
08.6 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.192
-0.101
-0.015
0.076
0.173
0.376 | .0320
.0226
.0193
.0216
.0310
.0738 | .0045
.0073
.0124 | -0.001
-0.001
-0.001
-0.002
-0.001
-0.000 | 0006 | .0004
.0003
.0003
0001
0005
0009 | .0020
.0020
.0021
.0021
.0021
.0023 | .0000
.0000
.0000
.0000 | .0006
.0005
.0005
.0004
.0004 | | 03.2
03.2
03.2
03.2
03.2
03.2 | -04.1
-02.1
-00.1
01.9
03.9
05.9
07.9 | 0.128
0.126
0.123
0.120
0.122
0.122
0.122 | .0249
.0250
.0253
.0251
.0251
.0243 | .0151
.0141
.0124 | 0.050
0.023
-0.002
-0.026
-0.053
-0.082
-0.112 | .0032
.0079
.0133 | 0003 | .0025
.0025
.0023
.0024
.0024
.0029 | .0000
.0000
.0000
.0000
.0000 | .0005
.0005
.0004
.0004
.0005 | | | | | | | M = 0.85 | | | | | | | -04.3
-02.1
00.0
02.2
04.4
08.8 | 00.0
00.0
00.0
00.0
00.0 | -0.209
-0.109
-0.015
0.085
0.189
0.412 | .0338
.0235
.0196
.0225
.0330 | •0066 | -0.002
-0.001
-0.002 | 0005
0003 | .0003
.0005
.0004
0000
0006 | .0023
.0019
.0020
.0020
.0022 | .0000
.0000
.0000
.0000
.0000 | .0006
.0005
.0004
.0004
.0004 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.1
-02.1
-00.1
01.9
03.9
05.9
08.0 | 0.142
0.140
0.136
0.134
0.134
0.134 | .0262
.0265
.0266
.0268
.0263
.0260
.0253 | .0126
.0108 | 0.025 | 0046
0005
.0036
.0086 | 0005
0003
0000
0001
0002 | .0024
.0023
.0022
.0019
.0024
.0025 | .0000
.0000
.0000
.0000
.0000 | .0005
.0004
.0004
.0003
.0004
.0004 | | | | | | | M = 0.95 | i | | | | | | -04.4
-02.2
00.0
02.2
04.4
09.0 | -00.1
-00.1
-00.1
00.0
00.0 | -0.221
-0.114
-0.012
0.099
0.215
0.473 | .0383
.0264
.0229
.0252
.0371
.0954 | .0056
.0054
.0038
.0048
.0071 | -0.000
-0.001 | 0009
0012
0007
0006
0010
0019 | 0005
0001
.0003
.0000
0009
0014 | .0012
.0011
.0009
.0011
.0011 | .0000
.0000
.0000
.0000 | .0004
.0003
.0003
.0002
.0003 | | |
 | | | M = 1.00 |) | | | | | | -04.4
-02.1
00.0
02.2
04.4
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.251
-0.139
-0.029
0.091
0.219
0.498 | .0495
.0356
.0303
.0337
.0457
.1053 | .0273
.0185
.0097
.0008 | -0.002
-0.002
-0.002
-0.004
-0.004 | 0008
0009
0004 | 0008
0001
.0001
.0002
.0003 | •0052
•0053
•0053
•0052
•0055
•0067 | .0000
.0000
.0000
.0000 | .0012
.0012
.0012
.0011
.0011 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.1
-02.1
-00.1
01.9
03.9
05.9
08.0 | 0.151
0.151
0.147
0.145
0.147
0.145
0.145 | .0366
.0373
.0373
.0385
.0377
.0372 | .0061
.0064
.0063 | 0.025
-0.004
-0.032
-0.063 | | 0001
.0001
.0002
.0005
.0003
0002
0006 | •0056
•0054
•0050
•0050
•0058
•0060
•0064 | .0000
.0000
.0000
.0000
.0000 | .0011
.0011
.0010
.0011
.0012
.0013
.0014 | | | | | | - | M = 1.25 | ; | | | | | | -04.4
-02.1
00.0
02.2
04.5
09.0 | 00.0
00.0
00.0
00.0
00.0 | -0.220
-0.115
-0.009
0.101
0.218
0.453 | .0440
.0323
.0279
.0315
.0435 | .0234
.0118
.0014
0081 | 0.000
0.001
-0.001
-0.002 | 0004 | 0009
0011 | .0075
.0074
.0077
.0073
.0074 | .0000
.0000
.0000
.0000 | .0009
.0008
.0008
.0008
.0011 | | 03.4
03.4
03.4
03.3
03.3
03.3 | -04.1
-02.1
-00.1
01.9
03.9
05.9
08.0 | 0.159
0.161
0.160
0.156
0.156
0.154
0.152 | .0363
.0365
.0366
.0360
.0361
.0358 | 0030
0035
0035
0040
0038 | 0.024
-0.002
-0.026
-0.054 | 0097
0047
0006
.0033
.0081
.0135
.0187 | .0003
0005
0010
0012
0018
0022
0028 | .0074
.0074
.0072
.0075
.0075
.0078 | .0000
.0000
.0000
.0000
.0000 | .0008
.0008
.0009
.0010
.0012
.0013 | TABLE VI.- AERODYNAMIC CHARACTERISTICS OF MODEL 4 ($\rm F_2W_2C_1V_2N_1)$ - Concluded | | | | | flow con 0 , m_0/m_∞ | | on N _{lE} ; | O | | | | |---|--|---|---|--|---|--|---|---|---|--| | α, deg | β, deg | CL | C _D | Cm | Сү | Cn | Cl | $^{\mathrm{C}}\mathrm{D}_{\mathrm{b_{F}}}$ | c _{Dp1} | c _{DpO} | | | | | | | M = 1.40 | | | | | | | -04.3
-02.1
00.0
02.2
04.5
08.9 | -00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1
-00 • 1 | -0.197
-0.100
-0.005
0.095
0.203
0.421 | .0410
.0309
.0275
.0306
.0422 | .0256
.0189
.0095
.0000
0093 | 0.002
0.003
0.002
0.001
0.001 | 0029
0027
0022
0018 | .0003
0001
0004
0006
0011
0019 | .0070
.0069
.0069
.0069
.0069 | .0000
.0000
.0000
.0000
.0000 | .0010
.0009
.0009
.0009
.0009 | | 03.3
03.3
03.3
03.3
03.3
03.3 | -04.1
-02.1
-00.1
01.9
04.0
06.0
07.6 | 0.149
0.150
0.148
0.145
0.145
0.145
0.145 | .0349
.0352
.0351
.0351
.0351
.0350 | 0044
0043
0044
0049
0053
0053 | -0.050
-0.078 | 0110
0061
0020
.0019
.0065
.0118 | 0000
0006
0010
0012
0018
0024
0029 | .0071
.0070
.0070
.0071
.0071
.0072 | .0000
.0000
.0000
.0000
.0000 | .0008
.0009
.0009
.0009
.0010
.0011 | | | | <u> </u> | | | M = 2.50 | | | | | | | -04.2
-02.2
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0
00.0 | -0.115
-0.056
0.004
0.065
0.128
0.252 | .0326
.0264
.0241
.0266
.0335 | .0059
.0035
.0002
0030
0061
0117 | 0.004
0.004
0.005
0.006
0.006 | | .0016
.0014
.0010
.0005
.0001 | .0039
.0039
.0038
.0037
.0037 | .0000
.0000
.0000
.0000
.0000 | .0007
.0006
.0006
.0006
.0006 | | 02.9
03.0
03.0
03.0
03.0
03.0
03.0 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.095
0.096
0.095
0.096
0.096
0.095
0.094
0.092 | .0302
.0298
.0294
.0294
.0294
.0293
.0293 | 0050
0054
0049
0046
0050
0055 | 0.006 | 0081
0068
0051
0034
0017
.0002
.0019 | .0026
.0017
.0010
.0003
0005
0013
0020 | .0039
.0039
.0038
.0037
.0037
.0037
.0038 | .0000
.0000
.0000
.0000
.0000
.0000 | .0006
.0006
.0006
.0006
.0006
.0006 | | | | | | | M = 3.00 | | | | | | | -04.2
-02.2
-00.1
01.9
04.0
08.1
02.8
02.9
02.9
03.0
03.0
03.1
05.2 | 00 • 1
00 1 | -0.095
-0.044
0.007
0.058
0.111
0.218
0.084
0.083
0.084
0.084
0.084
0.084
0.084
0.084
0.084 | .0276
.0275
.0274
.0275
.0277 | .0017
.0006
0012
0024
0035
0071
0036
0031
0029
0035
0035 | 0.003
0.004
0.004
0.006
0.007
0.063
0.042
0.023
0.005
-0.013
-0.033
-0.053
-0.075 | 0029
0031
0033
0036
0036
0070
0059
0046
0033
0020
0004 | .0015
.0013
.0010
.0007
.0004
0005
.0028
.0020
.0013
.0005
0003
0012
0020
0020 | .0030
.0030
.0030
.0030
.0030
.0029
.0031
.0031
.0031
.0031
.0031
.0032
.0033 | .0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000 | .0005
.0005
.0005
.0004
.0004
.0005
.0004
.0004
.0004
.0004
.0004
.0004 | | | | | | | M = 3.50 |) | | | | | | -04.2
-02.1
-00.1
01.9
03.9
08.1 | 00.0
00.0
00.0
00.0
00.0 | -0.081
-0.038
0.006
0.051
0.096
0.189 | •0286 | 0009
0016
0023 | 0.002 | 0027
0028 | .0016
.0014
.0010
.0007
.0003 | .0025
.0025
.0024
.0025
.0024
.0024 | .0000
.0000
.0000
.0000
.0000 | .0004
.0004
.0004
.0004
.0004 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.073
0.073
0.073
0.074
0.074
0.073
0.072 | .0257
.0256
.0257
.0258 | 0025
0022
0024
0028
0031
0032 | | 0055
0049
0039
0028
0019
0011
0011 | .0032
.0024
.0014
.0005
0004
0014
0022 | .0024
.0024
.0024
.0024
.0024
.0025
.0025 | .0000
.0000
.0000
.0000
.0000
.0000 | .0003
.0003
.0003
.0003
.0003
.0003 | Table VII.- Aerodynamic characteristics of model 5 ($F_1W_2C_1V_1N_1$) | (a) Mass-flow configuration N_{1A} ; $m_{\rm I}/m_{\rm co}=1.0,\ m_{\rm O}/m_{\rm co}=1.0$ | | | | | | | | | | | |--|---|--|--|--|--|--|--|---|--|--| | α, deg | β, deg | $c_{ t L}$ | c_D | Cm | СY | Cn | C ₂ | C _{DbF} | cDp1 | c _{DoO} | | M = 2.50 | | | | | | | | | | | | -04.3
-00.1
01.9
04.0
08.2 | 00.0
00.0
00.0
00.0 | -0.121
0.004
0.069
0.135
0.267 | .0251
.0160
.0187
.0263
.0561 | .0098
0009
0067
0125
0240 | -0.001
0.000
0.001
0.001
0.000 | .0001
.0000
0001
0001 | .0002
.0002
.0002
.0002 | .0036
.0036
.0036
.0036 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.9
02.9
02.9
02.9
02.9
02.9
02.9 | -06.0
-04.0
-02.0
00.0
02.0
04.0
06.0
08.0 | 0.100
0.101
0.101
0.102
0.102
0.102
0.101
0.099 | .0222
.0220
.0218
.0219
.0220
.0222
.0223 | 0095
0100
0098
0097
0100
0102
0102 | -0.033
-0.051 | 0102
0069
0033
0001
.0033
.0068
.0100 | .0021
.0013
.0008
.0002
0004
0009
0015
0019 | .0037
.0036
.0036
.0036
.0036
.0036 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | M = 3.00 | | | | | | | | | | | | -04.2
-00.1
01.9
04.0
08.1 | 00 • 1
00 • 1
00 • 1
00 • 1 |
-0.101
0.005
0.060
0.116
0.230 | •0221
•0142
•0168
•0236
•0499 | 0087 | 0.000
0.000
0.001
0.001
0.001 | .0000
0001
0002
0002
0003 | .0002
.0002
.0001
.0002 | •0029
•0030
•0029
•0029
•0029 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.8
02.8
02.9
02.9
03.0
03.0
03.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.3
08.3 | 0.087
0.087
0.087
0.088
0.088
0.088
0.086 | •0199
•0197
•0195
•0196
•0200
•0203
•0204
•0209 | 0069
0069
0071
0073
0077 | 0.031
0.016
0.001
-0.015
-0.031 | 0064
0043
0023
0002
.0020
.0042
.0063
.0089 | .0019
.0013
.0007
.0001
0005
0010
0015 | .0031
.0031
.0031
.0030
.0029
.0029
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | 04.8
04.9
04.9
05.0
05.0
05.1
05.1 | -06.0
-04.0
-01.9
00.1
02.1
04.2
06.2
08.3 | 0.144
0.143
0.143
0.144
0.145
0.144
0.144 | .0283
.0281
.0282
.0284
.0287
.0291
.0292 | 0108
0107
0109
0115
0122 | -0.049 | 0046
0031
0018
0002
.0014
.0029
.0045 | .0017
.0012
.0007
.0002
0004
0010
0013 | .0032
.0032
.0031
.0031
.0030
.0030
.0031 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | M = 3.50 | | | | | | | | | | | | -04.2
-00.1
01.9
03.9
08.0 | 00.0
00.0
00.0
00.0 | -0.088
0.004
0.052
0.100
0.198 | •0195
•0127
•0150
•0212
•0439 | →•0018 | -0.002
-0.001
-0.001
0.000
0.000 | .0003
.0002
.0001
.0001 | .0002
.0001
.0001
.0001 | •0023
•0023
•0023
•0022
•0023 | .0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000 | | 02.5
02.6
02.8
02.9
03.0
03.2
03.3 | -06.4
-04.2
-02.1
00.0
02.1
04.3
06.4
08.6 | 0.075
0.075
0.075
0.077
0.076
0.076
0.075
0.073 | •0174
•0178 | 0060
0057
0057
0058
0061
0062 | 0.000
-0.017
-0.032 | 0043
0033
0017
.0002
.0019
.0035
.0043 | .0022
.0016
.0009
.0001
0006
0013
0017 | .0023
.0024
.0024
.0024
.0024
.0023
.0023 | .0000
.0000
.0000
.0000
.0000
.0000 | .0000
.0000
.0000
.0000
.0000
.0000 | | | | | | | | | | | | | Figure 1.- System of stability axes and positive direction of forces, moments, and angles. (a) Three-quarter bottom view of model 3. A-27742 Figure 2.- Model photographs. A-27758 (b) Three-quarter bottom view of model $\boldsymbol{\mu}_{\star}$ Figure 2.- Concluded. H 13.78 .65 4.77 CONFIDENCI Nose profile: 146.32 radius circular arc -34.77- Note: All dimensions in inches except as noted (a) Model 1 - $(F_1W_1C_1V_1N_1)$. Figure 3.- Model drawings. 13,78 166 4.77 Nose profile: 146.32 radius circular arc -34.77 Note: All dimensions in inches except as noted (b) Model 2 - (F₁W₁C₁V₁N₂). Figure 3.- Continued. Note: All dimensions in inches except as noted (c) Model 3 - $(F_1W_1C_1V_1N_3)$. Figure 3.- Continued. (d) Model μ - (F₂W₂C₁V₂N₁). Note: All dimensions in inches except as noted Figure 3.- Continued. (e) Model 5 - $(F_1W_2C_1V_1N_1)$. Figure 3.- Continued. Figure 3.- Concluded. (a) Inboard nacelle. Figure 4.- Effects of off-design inlet mass flow on directional characteristics of model 1; α $\stackrel{>}{\sim}$ $3^{\rm O}.$ (b) Outboard nacelle and both nacelles. Figure 4.- Concluded. (a) Inboard nacelle. (b) Outboard nacelle and both nacelles. Figure 5.- Incremental yawing moment resulting from off-design inlet mass flow of model 1; $\alpha \approx 3^{\circ}$, $\beta = 0^{\circ}$. Figure 6.- Effects of off-design inlet mass flow on lateral characteristics of model 1; $\alpha \approx 3^{\circ}.$ (b) Outboard nacelle. Figure 6.- Concluded. (b) Outboard nacelle. Figure 7.- Incremental rolling moment resulting from off-design inlet mass flow of model 1; α \approx 3°, β = 0°. Figure 8.- Effects of angle of attack on incremental rolling moment of model 1; β = 0°. Figure 9.- Effects of off-design inlet mass flow on pitching-moment characteristics of model 1; $\beta = 0^{\circ}$. (b) Outboard nacelle and both nacelles. Figure 9.- Concluded. (b) Outboard nacelle. Figure 10.- Incremental pitching moment at zero lift of model 1 as a result of reduced inlet mass flow; β = 0°. (b) Outboard nacelle. Figure 11.- Effects of off-design inlet mass flow on longitudinal static margin of model 1; β = 0°. (a) Inboard nacelle. (b) Outboard nacelle and both nacelles. Figure 12.- Incremental drag at zero lift of model 1 as a result of reduced inlet mass flow; β = 0^{O}. Figure 13.- Incremental yawing moments resulting from reduced inlet mass flow of models 2 and 3; $\alpha \approx 3^{\circ}$, $\beta = 0^{\circ}$. Figure 14.- Incremental rolling moments produced by off-design inlet mass flow of models 2 and 3; $\alpha \approx 3^{\circ}$, $\beta = 0^{\circ}$. Figure 15.- Incremental pitching moment at zero lift produced by reduced inlet mass flow of models 2 and 3; β = 0°. Figure 16.- Effects of reduced inlet mass flow on longitudinal static margin of models 2 and 3; β = 0°. Figure 17.- Incremental drag at zero lift of models 2 and 3 as a result of reduced inlet mass flow; β = 0° . Figure 18.- Effects of off-design inlet mass flow on directional characteristics of model 4; α \approx 3°. (a) Incremental yawing moments. (b) Incremental rolling moments. Figure 20.- Summary of effects of off-design inlet mass flow on directional characteristics of model 4; $\alpha \approx 3^{\circ}$, $\beta = 0^{\circ}$. Figure 21.- Effects of off-design inlet mass flow on pitching-moment characteristics of model 4 ; β = 0°. (a) Incremental pitching moment at zero lift. (b) Longitudinal static margin variation. (c) Incremental drag at zero lift. Figure 22.- Summary of effects of off-design inlet mass flow on longitudinal characteristics of model $\frac{1}{2}$; $\beta = 0^{\circ}$.